HDU6165-FFF at Valentine

在一个特殊的情人节,一对恋人被囚禁在有向无环图结构的监狱中,需要找到从一个牢房到另一个牢房的路径以实现彼此的救援。此问题转化为判断任意两点间是否存在可达路径。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

FFF at Valentine

                                                                  Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
                                                                                            Total Submission(s): 327    Accepted Submission(s): 155


Problem Description

At Valentine's eve, Shylock and Lucar were enjoying their time as any other couples. Suddenly, LSH, Boss of FFF Group caught both of them, and locked them into two separate cells of the jail randomly. But as the saying goes: There is always a way out , the lovers made a bet with LSH: if either of them can reach the cell of the other one, then LSH has to let them go.
The jail is formed of several cells and each cell has some special portals connect to a specific cell. One can be transported to the connected cell by the portal, but be transported back is impossible. There will not be a portal connecting a cell and itself, and since the cost of a portal is pretty expensive, LSH would not tolerate the fact that two portals connect exactly the same two cells.
As an enthusiastic person of the FFF group, YOU are quit curious about whether the lovers can survive or not. So you get a map of the jail and decide to figure it out.
 

Input
Input starts with an integer T (T≤120), denoting the number of test cases.
For each case,
First line is two number n and m, the total number of cells and portals in the jail.(2≤n≤1000,m≤6000)
Then next m lines each contains two integer u and v, which indicates a portal from u to v.
 

Output
If the couple can survive, print “I love you my love and our love save us!”
Otherwise, print “Light my fire!”
 

Sample Input
  
3 5 5 1 2 2 3 2 4 3 5 4 5 3 3 1 2 2 3 3 1 5 5 1 2 2 3 3 1 3 4 4 5
 

Sample Output
  
Light my fire! I love you my love and our love save us! I love you my love and our love save us!
 

Source
 


题意:给定一个有向无环图,判断是否任意两点都能通过其中一点到达另外一点

解题思路:暴力对每个点bfs加点小优化即可(赛后发现不加优化1600ms也过了,优化600ms左右)



#include <iostream>
#include <cstdio>
#include <cstring>
#include <string>
#include <cmath>
#include <map>
#include <set>
#include <algorithm>
#include <vector>
#include <bitset>
#include <stack>
#include <queue>
#include <unordered_map>
#include <functional>

using namespace std;

#define LL long long
const int INF=0x3f3f3f3f;

int n,m;
int s[1005],nt[6009],e[6009];
bool mp[1005][1005];

void bfs(int k)
{
    for(int i=s[k];~i;i=nt[i])
    {
        int ee=e[i];
        if(ee<k)
        {
            for(int i=1;i<=n;i++)
                mp[k][i]|=mp[ee][i];
        }
    }
    queue<int>q;
    q.push(k);
    while(!q.empty())
    {
        int pre=q.front();
        q.pop();
        for(int i=s[pre];~i;i=nt[i])
        {
            int ee=e[i];
            if(!mp[k][ee])
            {
                mp[k][ee]=1;
                q.push(ee);
            }
        }
    }
}

int main()
{
    int t;
    scanf("%d",&t);
    while(t--)
    {
        scanf("%d%d",&n,&m);
        memset(s,-1,sizeof s);
        int cnt=0;
        for(int i=1;i<=m;i++)
        {
            int u,v;
            scanf("%d%d",&u,&v);
            nt[cnt]=s[u],s[u]=cnt,e[cnt++]=v;
        }
        memset(mp,false,sizeof mp);
        for(int i=1;i<=n;i++) bfs(i);
        int flag=1;
        for(int i=1;i<=n;i++)
        {
            for(int j=i+1;j<=n;j++)
                if(!mp[i][j]&&!mp[j][i]) {flag=0;break;}
            if(!flag) break;
        }
        if(flag) printf("I love you my love and our love save us!\n");
        else printf("Light my fire!\n");
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值