1127. ZigZagging on a Tree (30)
Suppose that all the keys in a binary tree are distinct positive integers. A unique binary tree can be determined by a given pair of postorder and inorder traversal sequences. And it is a simple standard routine to print the numbers in level-order. However, if you think the problem is too simple, then you are too naive. This time you are supposed to print the numbers in "zigzagging order" -- that is, starting from the root, print the numbers level-by-level, alternating between left to right and right to left. For example, for the following tree you must output: 1 11 5 8 17 12 20 15.

Input Specification:
Each input file contains one test case. For each case, the first line gives a positive integer N (<= 30), the total number of nodes in the binary tree. The second line gives the inorder sequence and the third line gives the postorder sequence. All the numbers in a line are separated by a space.
Output Specification:
For each test case, print the zigzagging sequence of the tree in a line. All the numbers in a line must be separated by exactly one space, and there must be no extra space at the end of the line.
Sample Input:8 12 11 20 17 1 15 8 5 12 20 17 11 15 8 5 1Sample Output:
1 11 5 8 17 12 20 15
题意:给你一棵树的中序遍历和后序遍历,求出这棵树的前序遍历
解题思路:dfs
#include <iostream>
#include <cstdio>
#include <cstring>
#include <string>
#include <algorithm>
#include <cmath>
#include <map>
#include <cmath>
#include <set>
#include <stack>
#include <queue>
#include <vector>
#include <bitset>
#include <functional>
using namespace std;
#define LL long long
const int INF = 0x3f3f3f3f;
int n;
int a[35],b[35],son[35][2],ans[35],c[35];
int dfs(int l, int r, int ll, int rr)
{
if (l > r || ll > r) return 0;
for (int i = l; i <= r; i++)
{
if (b[rr] == a[i])
{
son[rr][0] = dfs(l, i - 1,ll ,i-l+ll-1);
son[rr][1] = dfs(i + 1, r, i - l + ll, rr - 1);
}
}
return rr;
}
int main()
{
while (~scanf("%d", &n))
{
for (int i = 1; i <= n; i++) scanf("%d", &a[i]);
for (int i = 1; i <= n; i++) scanf("%d", &b[i]);
dfs(1, n, 1, n);
queue<int>q;
int cnt = 1,now=0;
q.push(n);
while (!q.empty())
{
int sum = 1;
while (!q.empty())
{
int pre = q.front();
q.pop();
c[sum++] = pre;
}
if (!now)
{
for (int i = sum - 1; i >= 1; i--)
ans[cnt++] = c[i];
}
else
{
for (int i = 1; i < sum; i++)
ans[cnt++] = c[i];
}
now ^= 1;
for (int i = 1; i < sum; i++)
{
if (son[c[i]][0]) q.push(son[c[i]][0]);
if(son[c[i]][1]) q.push(son[c[i]][1]);
}
}
for (int i = 1; i <= n; i++) printf("%d%c", b[ans[i]], i == n ? '\n' : ' ');
}
return 0;
}