HDU6029-Graph Theory

本文探讨了一种名为“Cool图”的特殊图结构,并提出了一种有效算法来判断此类图是否存在完美匹配。通过分析图的生成规则及节点连接特性,算法能够快速确定答案。

Graph Theory

                                                                           Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)
                                                                                                             Total Submission(s): 0    Accepted Submission(s): 0


Problem Description
Little Q loves playing with different kinds of graphs very much. One day he thought about an interesting category of graphs called ``Cool Graph'', which are generated in the following way:
Let the set of vertices be {1, 2, 3, ..., n}. You have to consider every vertice from left to right (i.e. from vertice 2 to n). At vertice i, you must make one of the following two decisions:
(1) Add edges between this vertex and all the previous vertices (i.e. from vertex 1 to i1).
(2) Not add any edge between this vertex and any of the previous vertices.
In the mathematical discipline of graph theory, a matching in a graph is a set of edges without common vertices. A perfect matching is a matching that each vertice is covered by an edge in the set.
Now Little Q is interested in checking whether a ''Cool Graph'' has perfect matching. Please write a program to help him.
 

Input
The first line of the input contains an integer T(1T50), denoting the number of test cases.
In each test case, there is an integer n(2n100000) in the first line, denoting the number of vertices of the graph.
The following line contains n1 integers a2,a3,...,an(1ai2), denoting the decision on each vertice.
 

Output
For each test case, output a string in the first line. If the graph has perfect matching, output ''Yes'', otherwise output ''No''.
 

Sample Input
3 2 1 2 2 4 1 1 2
 

Sample Output
Yes No No
 

题意:有n个点,每个点有两种连边方式,1表示和前面所有的点连边,2表示和前面所有的点不连边,问能不能构成完美匹配

解题思路:若n为奇数,那么必然不能构成完美匹配,n为偶数时,从后向前判,看方式1的个数是否一直大于方式2


#include <iostream>
#include <cstdio>
#include <cstring>
#include <string>
#include <algorithm>
#include <cmath>
#include <map>
#include <cmath>
#include <set>
#include <stack>
#include <queue>
#include <vector>
#include <bitset>
#include <functional>

using namespace std;

#define LL long long
const int INF=0x3f3f3f3f;

int a[100005];

int main()
{
    int t,n;
    scanf("%d",&t);
    while(t--)
    {
        scanf("%d",&n);
        for(int i=1; i<n; i++)
            scanf("%d",&a[i]);
        if(n%2)
        {
            printf("No\n");
            continue;
        }
        int cnt=0;
        int flag=0;
        for(int i=n-1; i>=1; i--)
        {
            if(a[i]==1) cnt++;
            else
            {
                if(cnt==0)
                {
                    flag=1;
                    break;
                }
                cnt--;
            }
        }
        if(flag) printf("No\n");
        else printf("Yes\n");
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值