团体程序设计天梯赛L3-016 二叉搜索树的结构

本文介绍如何通过一系列互不相等的整数构建二叉搜索树,并验证树结构的相关属性,包括节点的父、子关系及层级位置。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

L3-016. 二叉搜索树的结构

时间限制
400 ms
内存限制
65536 kB
代码长度限制
8000 B
判题程序
Standard
作者
陈越

二叉搜索树或者是一棵空树,或者是具有下列性质的二叉树: 若它的左子树不空,则左子树上所有结点的值均小于它的根结点的值;若它的右子树不空,则右子树上所有结点的值均大于它的根结点的值;它的左、右子树也分别为二叉搜索树。(摘自百度百科)

给定一系列互不相等的整数,将它们顺次插入一棵初始为空的二叉搜索树,然后对结果树的结构进行描述。你需要能判断给定的描述是否正确。例如将{ 2 4 1 3 0 }插入后,得到一棵二叉搜索树,则陈述句如“2是树的根”、“1和4是兄弟结点”、“3和0在同一层上”(指自顶向下的深度相同)、“2是4的双亲结点”、“3是4的左孩子”都是正确的;而“4是2的左孩子”、“1和3是兄弟结点”都是不正确的。

输入格式:

输入在第一行给出一个正整数N(<= 100),随后一行给出N个互不相同的整数,数字间以空格分隔,要求将之顺次插入一棵初始为空的二叉搜索树。之后给出一个正整数M(<= 100),随后M行,每行给出一句待判断的陈述句。陈述句有以下6种:

  • "A is the root",即"A是树的根";
  • "A and B are siblings",即"A和B是兄弟结点";
  • "A is the parent of B",即"A是B的双亲结点";
  • "A is the left child of B",即"A是B的左孩子";
  • "A is the right child of B",即"A是B的右孩子";
  • "A and B are on the same level",即"A和B在同一层上"。

题目保证所有给定的整数都在整型范围内。

输出格式:

对每句陈述,如果正确则输出“Yes”,否则输出“No”,每句占一行。

输入样例:
5
2 4 1 3 0
8
2 is the root
1 and 4 are siblings
3 and 0 are on the same level
2 is the parent of 4
3 is the left child of 4
1 is the right child of 2
4 and 0 are on the same level
100 is the right child of 3
输出样例:
Yes
Yes
Yes
Yes
Yes
No
No
No

解题思路:模拟


#include <iostream>
#include <cstdio>
#include <cstring>
#include <string>
#include <algorithm>
#include <cmath>
#include <map>
#include <set>
#include <stack>
#include <queue>
#include <vector>
#include <bitset>

using namespace std;

#define LL long long
const int INF = 0x3f3f3f3f;

int x[105][2];
int a[105];
int n, q,l,ll;

void dfs(int k, int kk, int level,int flag)
{
	if (k == kk) { flag ? ll = level : l = level; return; }
	if (x[k][0] != -1) dfs(x[k][0], kk, level + 1,flag);
	if (flag&&ll) return;
	if (!flag&&l) return;
	if (x[k][1] != -1) dfs(x[k][1], kk, level + 1,flag);
}

int main()
{
	while (~scanf("%d", &n))
	{
		memset(x, -1, sizeof x);
		for (int i = 1; i <= n; i++)
		{
			scanf("%d", &a[i]);
			if (i == 1) continue;
			int k = 1;
			while (1)
			{
				if (a[i] > a[k] && x[k][1] != -1) k = x[k][1];
				else if (a[i] < a[k] && x[k][0] != -1) k = x[k][0];
				else
				{
					if (a[i] > a[k]) x[k][1] = i;
					else x[k][0] = i;
					break;
				}
			}
		}
		scanf("%d", &q);
		while (q--)
		{
			int xx, yy, flag = 1, k=0, kk=0;
			char ch[10], s[10];
			scanf("%d%s", &xx, ch);
			for (int i = 1; i <= n; i++)
			{
				if (xx == a[i])
				{
					k = i; break;
				}
			}
			if (!k) flag = 0;
			if (!strcmp(ch, "is"))
			{
				scanf("%s%s", ch, ch);
				if (!strcmp(ch, "root"))
				{
					if (k != 1) flag = 0;
				}
				else if (!strcmp(ch, "parent"))
				{
					scanf("%s%d", ch, &yy);
					for (int i = 1; i <= n; i++)
					{
						if (yy == a[i])
						{
							kk = i; break;
						}
					}
					if (!kk) flag = 0;
					if (x[k][0] != kk&&x[k][1] != kk) flag = 0;
				}
				else
				{
					scanf("%s%s%d", s, s, &yy);
					for (int i = 1; i <= n; i++)
					{
						if (yy == a[i])
						{
							kk = i; break;
						}
					}
					if (!kk) flag = 0;
					if (!strcmp(ch, "left") && x[kk][0] != k) flag = 0;
					if (!strcmp(ch, "right") && x[kk][1] != k) flag = 0;
				}
			}
			else
			{
				scanf("%d%s%s", &yy, ch, ch);
				for (int i = 1; i <= n; i++)
				{
					if (yy == a[i])
					{
						kk = i; break;
					}
				}
				if (!kk) flag = 0;
				if (!strcmp(ch, "siblings"))
				{
					flag = 0;
					for (int i = 1; i <= n; i++)
						if ((x[i][0] == k&&x[i][1] == kk) || (x[i][1] == k&&x[i][0] == kk)) flag = 1;
				}
				else
				{
					scanf("%s%s%s", ch, ch, ch);
					l = 0, ll = 0;
					dfs(1, k, 1,0);
					dfs(1, kk, 1,1);
					if (l != ll) flag = 0;
				}
			}
			if (flag) printf("Yes\n");
			else printf("No\n");
		}
	}
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值