POJ3041-Asteroids

解决一个经典的算法问题,通过在N*N的矩阵中利用最少的武器射击次数来清除所有行星。采用二分图匹配策略找到最优解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Asteroids
Time Limit: 1000MS Memory Limit: 65536K
Total Submissions: 21806 Accepted: 11839

Description

Bessie wants to navigate her spaceship through a dangerous asteroid field in the shape of an N x N grid (1 <= N <= 500). The grid contains K asteroids (1 <= K <= 10,000), which are conveniently located at the lattice points of the grid. 

Fortunately, Bessie has a powerful weapon that can vaporize all the asteroids in any given row or column of the grid with a single shot.This weapon is quite expensive, so she wishes to use it sparingly.Given the location of all the asteroids in the field, find the minimum number of shots Bessie needs to fire to eliminate all of the asteroids.

Input

* Line 1: Two integers N and K, separated by a single space. 
* Lines 2..K+1: Each line contains two space-separated integers R and C (1 <= R, C <= N) denoting the row and column coordinates of an asteroid, respectively.

Output

* Line 1: The integer representing the minimum number of times Bessie must shoot.

Sample Input

3 4
1 1
1 3
2 2
3 2

Sample Output

2

Hint

INPUT DETAILS: 
The following diagram represents the data, where "X" is an asteroid and "." is empty space: 
X.X 
.X. 
.X.
 

OUTPUT DETAILS: 
Bessie may fire across row 1 to destroy the asteroids at (1,1) and (1,3), and then she may fire down column 2 to destroy the asteroids at (2,2) and (3,2).

Source


题意:有一个n*n的矩阵,在矩阵上有m个行星,每一个武器都可以消灭一行或者一列的行星,要求使用最小的武器消灭所有的行星

解题思路:二分图,将每一行看成一个节点,分到一边,每一列也看成一个节点,分到另一边,如果每行和每列有交点就联边,要使用最少的武器消灭所有的行星,就是求最大匹配的数


#include <iostream>
#include <cstdio>
#include <string>
#include <cstring>
#include <algorithm>
#include <queue>
#include <vector>
#include <set>
#include <stack>
#include <map>
#include <climits>
#include <functional>

using namespace std;

#define LL long long
const int INF=0x3f3f3f3f;

int n,m;
int x[525],y[525];
int s[525],nt[20050],e[20050];
int visit[525];

bool path(int k)
{
    for(int i=s[k];~i;i=nt[i])
    {
        int ee=e[i];
        if(!visit[ee])
        {
            visit[ee]=1;
            if(y[ee]==-1||path(y[ee]))
            {
                y[ee]=k;
                x[k]=ee;
                return 1;
            }
        }
    }
    return 0;
}

void MaxMatch()
{
    int ans=0;
    memset(x,-1,sizeof x);
    memset(y,-1,sizeof y);
    for(int i=1;i<=n;i++)
    {
        if(x[i]==-1)
        {
            memset(visit,0,sizeof visit);
            if(path(i)) ans++;
        }
    }
    printf("%d\n",ans);
}

int main()
{
    while(~scanf("%d %d",&n,&m))
    {
        int cnt=1,ee,ss;
        memset(s,-1,sizeof s);
        memset(nt,-1,sizeof nt);
        for(int i=1;i<=m;i++)
        {
            scanf("%d %d",&ss,&ee);
            nt[cnt]=s[ss],s[ss]=cnt,e[cnt++]=ee;
        }
        MaxMatch();
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值