Codeforces 251A-Points on Line

本文探讨了一个经典的组合数学问题,即从一组沿着Ox轴分布的点中选择三个点的方法数量,使得最远两点间的距离不超过给定值d。文章提供了完整的代码实现,包括输入输出示例,帮助读者理解算法细节。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Points on Line
time limit per test
2 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

Little Petya likes points a lot. Recently his mom has presented him n points lying on the line OX. Now Petya is wondering in how many ways he can choose three distinct points so that the distance between the two farthest of them doesn't exceed d.

Note that the order of the points inside the group of three chosen points doesn't matter.

Input

The first line contains two integers: n and d (1 ≤ n ≤ 105; 1 ≤ d ≤ 109). The next line contains n integers x1, x2, ..., xn, their absolute value doesn't exceed 109 — the x-coordinates of the points that Petya has got.

It is guaranteed that the coordinates of the points in the input strictly increase.

Output

Print a single integer — the number of groups of three points, where the distance between two farthest points doesn't exceed d.

Please do not use the %lld specifier to read or write 64-bit integers in С++. It is preferred to use the cincout streams or the %I64dspecifier.

Examples
input
4 3
1 2 3 4
output
4
input
4 2
-3 -2 -1 0
output
2
input
5 19
1 10 20 30 50
output
1
Note

In the first sample any group of three points meets our conditions.

In the seconds sample only 2 groups of three points meet our conditions: {-3, -2, -1} and {-2, -1, 0}.

In the third sample only one group does: {1, 10, 20}.


题意:问从集合中取出3个数,最大数与最小数的差值小于k的方式有多少种。

#include <iostream>
#include <cstdio>
#include <string>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <queue>
#include <vector>
#include <set>
#include <stack>
#include <map>
#include <climits>

using namespace std;

#define LL long long
const int INF=0x3f3f3f3f;
const int MAXN=1000010;

int a[MAXN];

int main()
{
    int n,k;
    while(~scanf("%d %d",&n,&k))
    {
        for(int i=1;i<=n;i++)
            scanf("%d",&a[i]);
        LL ans=0;
        for(int i=1;i<=n-2;i++)
        {
            LL p=upper_bound(a+i,a+1+n,a[i]+k)-a-1;
            ans+=(p-i)*(p-i-1)/2;
        }
        printf("%lld\n",ans);
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值