Time Limit: 5000MS | Memory Limit: 131072K | |
Total Submissions: 103367 | Accepted: 32295 | |
Case Time Limit: 2000MS |
Description
You have N integers, A1, A2, ... , AN. You need to deal with two kinds of operations. One type of operation is to add some given number to each number in a given interval. The other is to ask for the sum of numbers in a given interval.
Input
The first line contains two numbers N and Q. 1 ≤ N,Q ≤ 100000.
The second line contains N numbers, the initial values of A1, A2, ... , AN. -1000000000 ≤ Ai ≤ 1000000000.
Each of the next Q lines represents an operation.
"C a b c" means adding c to each of Aa, Aa+1, ... , Ab. -10000 ≤ c ≤ 10000.
"Q a b" means querying the sum of Aa, Aa+1, ... , Ab.
Output
You need to answer all Q commands in order. One answer in a line.
Sample Input
10 5 1 2 3 4 5 6 7 8 9 10 Q 4 4 Q 1 10 Q 2 4 C 3 6 3 Q 2 4
Sample Output
4 55 9 15
Hint
Source
题意:给定N个数的序列,有Q个操作。操作分两种:1、将某个区间内的所有数都加上某个数。2、计算某个区间的所有数之和并输出。
解题思路:线段树。单点更新会TLE,只能区间更新,每个节点加一个延迟标记来记录增量
线段树:
#include <iostream>
#include <cstdio>
#include <string>
#include <cstring>
#include <cmath>
#include <queue>
#include <vector>
#include <set>
#include <stack>
#include <map>
#include <climits>
using namespace std;
#define LL long long
const int INF=0x3f3f3f3f;
const int MAXN=100001;
int a[MAXN];
struct node
{
int l,r;
LL flag,sum;
}b[MAXN*4];
void build(int k,int l,int r)
{
b[k].l=l,b[k].r=r,b[k].flag=0;
if(l==r)
{
b[k].sum=a[l];
return;
}
int mid=(l+r)>>1;
build(k<<1,l,mid);
build(k<<1|1,mid+1,r);
b[k].sum=b[k<<1].sum+b[k<<1|1].sum;
}
long long query(int k,int l,int r)
{
if(b[k].l>=l&&b[k].r<=r) return b[k].sum;
if(b[k].flag)
{
b[k<<1].flag+=b[k].flag;
b[k<<1|1].flag+=b[k].flag;
b[k<<1].sum+=b[k].flag*(b[k<<1].r-b[k<<1].l+1);
b[k<<1|1].sum+=b[k].flag*(b[k<<1|1].r-b[k<<1|1].l+1);
b[k].flag=0;
}
int mid=(b[k].l+b[k].r)>>1;
LL ans=0;
if(mid>=l) ans+=query(k<<1,l,r);
if(mid<r) ans+=query(k<<1|1,l,r);
return ans;
}
void update(int k,int l,int r,long long v)
{
if(b[k].l>=l&&b[k].r<=r)
{
b[k].flag+=v;
b[k].sum+=v*(b[k].r-b[k].l+1);
return;
}
if(b[k].flag)
{
b[k<<1].flag+=b[k].flag;
b[k<<1|1].flag+=b[k].flag;
b[k<<1].sum+=b[k].flag*(b[k<<1].r-b[k<<1].l+1);
b[k<<1|1].sum+=b[k].flag*(b[k<<1|1].r-b[k<<1|1].l+1);
b[k].flag=0;
}
int mid=(b[k].l+b[k].r)>>1;
if(mid>=l) update(k<<1,l,r,v);
if(mid<r) update(k<<1|1,l,r,v);
b[k].sum=b[k<<1].sum+b[k<<1|1].sum;
}
int main()
{
int n,q;
while(~scanf("%d %d",&n,&q))
{
for (int i=1;i<=n;i++) scanf("%d",&a[i]);
build(1,1,n);
string s;
int l,r;
LL v;
while(q--)
{
cin>>s;
scanf("%d %d",&l,&r);
if(s=="Q") printf("%lld\n", query(1,l,r));
else
{
scanf("%lld",&v);
if(v) update(1,l,r,v);
}
}
}
return 0;
}
Splay(练手题):
#include <iostream>
#include <cstdio>
#include <cstring>
#include <string>
#include <algorithm>
#include <map>
#include <set>
#include <stack>
#include <queue>
#include <vector>
#include <bitset>
#include <functional>
using namespace std;
#define LL long long
const int maxn = 2e5 + 10;
int n, m, l, r, v, root, a[maxn];
char ch[10];
struct Splays
{
const static int maxn = 2e5 + 10;
const static int INF = 0x7FFFFFFF;
int son[maxn][2], fa[maxn], tot;
int val[maxn], id[maxn], cnt[maxn], lazy[maxn];
LL sum[maxn];
int Node(int k, int f, int v)
{
son[tot][0] = son[tot][1] = lazy[tot] = 0;
fa[tot] = f, val[tot] = sum[tot] = v;
cnt[tot] = 1, id[tot] = k;
return tot++;
}
void clear()
{
son[0][0] = son[0][1] = fa[0] = lazy[0] = val[0] = sum[0] = cnt[0] = id[0] = 0;
tot = 1;
}
void rotate(int k, int p)
{
int y = fa[k];
son[y][!p] = son[k][p], fa[son[k][p]] = y;
if (fa[y]) son[fa[y]][y == son[fa[y]][1]] = k;
fa[k] = fa[y], fa[y] = k, son[k][p] = y;
cnt[k] = cnt[y], cnt[y] = cnt[son[y][0]] + cnt[son[y][1]] + 1;
sum[k] = sum[y], sum[y] = sum[son[y][0]] + sum[son[y][1]] + val[y];
}
void Splay(int k, int p)
{
for (int f = fa[p]; fa[k] != f;)
{
if (fa[fa[k]] == f) { rotate(k, k == son[fa[k]][0]); return; }
int y = (k == son[fa[k]][0]), z = (fa[k] == son[fa[fa[k]]][0]);
y^z ? (rotate(k, y), rotate(k, z)) : (rotate(fa[k], z), rotate(k, y));
}
}
void build(int &k, int l, int r, int f)
{
if (l > r) return;
int mid = l + r >> 1;
k = Node(mid, f, a[mid]);
build(son[k][0], l, mid - 1, k);
build(son[k][1], mid + 1, r, k);
cnt[k] += cnt[son[k][0]] + cnt[son[k][1]];
sum[k] += sum[son[k][0]] + sum[son[k][1]];
}
void Push(int k)
{
if (son[k][0]) lazy[son[k][0]] += lazy[k], sum[son[k][0]] += 1LL * lazy[k] * cnt[son[k][0]];
if (son[k][1]) lazy[son[k][1]] += lazy[k], sum[son[k][1]] += 1LL * lazy[k] * cnt[son[k][1]];
val[k] += lazy[k], lazy[k] = 0;
}
void update(int &k, int p)
{
for (int i = k; i; i = son[i][id[i] < p])
{
if (lazy[i]) Push(i);
if (id[i] == p)
{
Splay(i, k), k = i;
break;
}
}
}
void change(int &k, int l, int r, int v)
{
update(k, l - 1);
update(son[k][1], r + 1);
lazy[son[son[k][1]][0]] += v;
sum[son[son[k][1]][0]] += 1LL * v * cnt[son[son[k][1]][0]];
sum[son[k][1]] += 1LL * v * cnt[son[son[k][1]][0]];
sum[k] += 1LL * v * cnt[son[son[k][1]][0]];
}
void find(int &k, int l, int r)
{
update(k, l - 1);
update(son[k][1], r + 1);
printf("%lld\n", sum[son[son[k][1]][0]]);
}
}solve;
int main()
{
while (~scanf("%d%d", &n, &m))
{
solve.clear();
a[0] = a[n + 1] = root = 0;
for (int i = 1; i <= n; i++) scanf("%d", &a[i]);
solve.build(root, 0, n + 1, 0);
while (m--)
{
scanf("%s%d%d", ch, &l, &r);
if (ch[0] == 'Q') solve.find(root, l, r);
else
{
scanf("%d", &v);
solve.change(root, l, r, v);
}
}
}
return 0;
}