POJ3468-A Simple Problem with Integers

本文介绍了一种使用线段树和伸展树解决区间加法及区间求和问题的方法。通过两个具体的实现案例,展示了如何高效地处理这类问题,并提供源代码以供读者学习和参考。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

A Simple Problem with Integers
Time Limit: 5000MS Memory Limit: 131072K
Total Submissions: 103367 Accepted: 32295
Case Time Limit: 2000MS

Description

You have N integers, A1A2, ... , AN. You need to deal with two kinds of operations. One type of operation is to add some given number to each number in a given interval. The other is to ask for the sum of numbers in a given interval.

Input

The first line contains two numbers N and Q. 1 ≤ N,Q ≤ 100000.
The second line contains N numbers, the initial values of A1A2, ... , AN. -1000000000 ≤ Ai ≤ 1000000000.
Each of the next Q lines represents an operation.
"C a b c" means adding c to each of AaAa+1, ... , Ab. -10000 ≤ c ≤ 10000.
"Q a b" means querying the sum of AaAa+1, ... , Ab.

Output

You need to answer all Q commands in order. One answer in a line.

Sample Input

10 5
1 2 3 4 5 6 7 8 9 10
Q 4 4
Q 1 10
Q 2 4
C 3 6 3
Q 2 4

Sample Output

4
55
9
15

Hint

The sums may exceed the range of 32-bit integers.

Source


题意:给定N个数的序列,有Q个操作。操作分两种:1、将某个区间内的所有数都加上某个数。2、计算某个区间的所有数之和并输出。

解题思路:线段树。单点更新会TLE,只能区间更新,每个节点加一个延迟标记来记录增量


线段树:

#include <iostream>
#include <cstdio>
#include <string>
#include <cstring>
#include <cmath>
#include <queue>
#include <vector>
#include <set>
#include <stack>
#include <map>
#include <climits>

using namespace std;

#define LL long long
const int INF=0x3f3f3f3f;
const int MAXN=100001;
int a[MAXN];

struct node
{
    int l,r;
    LL flag,sum;
}b[MAXN*4];

void build(int k,int l,int r)
{
    b[k].l=l,b[k].r=r,b[k].flag=0;
    if(l==r)
    {
        b[k].sum=a[l];
        return;
    }
    int mid=(l+r)>>1;
    build(k<<1,l,mid);
    build(k<<1|1,mid+1,r);
    b[k].sum=b[k<<1].sum+b[k<<1|1].sum;
}

long long query(int k,int l,int r)
{
    if(b[k].l>=l&&b[k].r<=r) return b[k].sum;
    if(b[k].flag)
    {
        b[k<<1].flag+=b[k].flag;
        b[k<<1|1].flag+=b[k].flag;
        b[k<<1].sum+=b[k].flag*(b[k<<1].r-b[k<<1].l+1);
        b[k<<1|1].sum+=b[k].flag*(b[k<<1|1].r-b[k<<1|1].l+1);
        b[k].flag=0;
    }
    int mid=(b[k].l+b[k].r)>>1;
    LL ans=0;
    if(mid>=l) ans+=query(k<<1,l,r);
    if(mid<r) ans+=query(k<<1|1,l,r);
    return ans;
}

void update(int k,int l,int r,long long v)
{
    if(b[k].l>=l&&b[k].r<=r)
    {
        b[k].flag+=v;
        b[k].sum+=v*(b[k].r-b[k].l+1);
        return;
    }
    if(b[k].flag)
    {
        b[k<<1].flag+=b[k].flag;
        b[k<<1|1].flag+=b[k].flag;
        b[k<<1].sum+=b[k].flag*(b[k<<1].r-b[k<<1].l+1);
        b[k<<1|1].sum+=b[k].flag*(b[k<<1|1].r-b[k<<1|1].l+1);
        b[k].flag=0;
    }
    int mid=(b[k].l+b[k].r)>>1;
    if(mid>=l) update(k<<1,l,r,v);
    if(mid<r) update(k<<1|1,l,r,v);
    b[k].sum=b[k<<1].sum+b[k<<1|1].sum;
}

int main()
{
    int n,q;
    while(~scanf("%d %d",&n,&q))
    {
        for (int i=1;i<=n;i++) scanf("%d",&a[i]);
        build(1,1,n);
        string s;
        int l,r;
        LL v;
        while(q--)
        {
            cin>>s;
            scanf("%d %d",&l,&r);
            if(s=="Q") printf("%lld\n", query(1,l,r));
            else
            {
                scanf("%lld",&v);
                if(v) update(1,l,r,v);
            }
        }
    }
    return 0;
}

Splay(练手题):

#include <iostream>     
#include <cstdio>     
#include <cstring>     
#include <string>     
#include <algorithm>     
#include <map>     
#include <set>     
#include <stack>     
#include <queue>     
#include <vector>     
#include <bitset>     
#include <functional>  

using namespace std;

#define LL long long  

const int maxn = 2e5 + 10;
int n, m, l, r, v, root, a[maxn];
char ch[10];

struct Splays
{
	const static int maxn = 2e5 + 10;
	const static int INF = 0x7FFFFFFF;
	int son[maxn][2], fa[maxn], tot;
	int val[maxn], id[maxn], cnt[maxn], lazy[maxn];
	LL sum[maxn];

	int Node(int k, int f, int v)
	{
		son[tot][0] = son[tot][1] = lazy[tot] = 0;
		fa[tot] = f, val[tot] = sum[tot] = v;
		cnt[tot] = 1, id[tot] = k;
		return tot++;
	}

	void clear()
	{
		son[0][0] = son[0][1] = fa[0] = lazy[0] = val[0] = sum[0] = cnt[0] = id[0] = 0;
		tot = 1;
	}

	void rotate(int k, int p)
	{
		int y = fa[k];
		son[y][!p] = son[k][p], fa[son[k][p]] = y;
		if (fa[y]) son[fa[y]][y == son[fa[y]][1]] = k;
		fa[k] = fa[y], fa[y] = k, son[k][p] = y;
		cnt[k] = cnt[y], cnt[y] = cnt[son[y][0]] + cnt[son[y][1]] + 1;
		sum[k] = sum[y], sum[y] = sum[son[y][0]] + sum[son[y][1]] + val[y];
	}

	void Splay(int k, int p)
	{
		for (int f = fa[p]; fa[k] != f;)
		{
			if (fa[fa[k]] == f) { rotate(k, k == son[fa[k]][0]); return; }
			int y = (k == son[fa[k]][0]), z = (fa[k] == son[fa[fa[k]]][0]);
			y^z ? (rotate(k, y), rotate(k, z)) : (rotate(fa[k], z), rotate(k, y));
		}
	}

	void build(int &k, int l, int r, int f)
	{
		if (l > r) return;
		int mid = l + r >> 1;
		k = Node(mid, f, a[mid]);
		build(son[k][0], l, mid - 1, k);
		build(son[k][1], mid + 1, r, k);
		cnt[k] += cnt[son[k][0]] + cnt[son[k][1]];
		sum[k] += sum[son[k][0]] + sum[son[k][1]];
	}

	void Push(int k)
	{
		if (son[k][0]) lazy[son[k][0]] += lazy[k], sum[son[k][0]] += 1LL * lazy[k] * cnt[son[k][0]];
		if (son[k][1]) lazy[son[k][1]] += lazy[k], sum[son[k][1]] += 1LL * lazy[k] * cnt[son[k][1]];
		val[k] += lazy[k], lazy[k] = 0;
	}

	void update(int &k, int p)
	{
		for (int i = k; i; i = son[i][id[i] < p])
		{
			if (lazy[i]) Push(i);
			if (id[i] == p)
			{
				Splay(i, k), k = i;
				break;
			}
		}
	}

	void change(int &k, int l, int r, int v)
	{
		update(k, l - 1);
		update(son[k][1], r + 1);
		lazy[son[son[k][1]][0]] += v;
		sum[son[son[k][1]][0]] += 1LL * v * cnt[son[son[k][1]][0]];
		sum[son[k][1]] += 1LL * v * cnt[son[son[k][1]][0]];
		sum[k] += 1LL * v * cnt[son[son[k][1]][0]];
	}

	void find(int &k, int l, int r)
	{
		update(k, l - 1);
		update(son[k][1], r + 1);
		printf("%lld\n", sum[son[son[k][1]][0]]);
	}
}solve;

int main()
{
	while (~scanf("%d%d", &n, &m))
	{
		solve.clear();
		a[0] = a[n + 1] = root = 0;
		for (int i = 1; i <= n; i++) scanf("%d", &a[i]);
		solve.build(root, 0, n + 1, 0);
		while (m--)
		{
			scanf("%s%d%d", ch, &l, &r);
			if (ch[0] == 'Q') solve.find(root, l, r);
			else
			{
				scanf("%d", &v);
				solve.change(root, l, r, v);
			}
		}
	}
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值