Minimum Inversion Number
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 18396 Accepted Submission(s): 11168
Problem Description
The inversion number of a given number sequence a1, a2, ..., an is the number of pairs (ai, aj) that satisfy i < j and ai > aj.
For a given sequence of numbers a1, a2, ..., an, if we move the first m >= 0 numbers to the end of the seqence, we will obtain another sequence. There are totally n such sequences as the following:
a1, a2, ..., an-1, an (where m = 0 - the initial seqence)
a2, a3, ..., an, a1 (where m = 1)
a3, a4, ..., an, a1, a2 (where m = 2)
...
an, a1, a2, ..., an-1 (where m = n-1)
You are asked to write a program to find the minimum inversion number out of the above sequences.
For a given sequence of numbers a1, a2, ..., an, if we move the first m >= 0 numbers to the end of the seqence, we will obtain another sequence. There are totally n such sequences as the following:
a1, a2, ..., an-1, an (where m = 0 - the initial seqence)
a2, a3, ..., an, a1 (where m = 1)
a3, a4, ..., an, a1, a2 (where m = 2)
...
an, a1, a2, ..., an-1 (where m = n-1)
You are asked to write a program to find the minimum inversion number out of the above sequences.
Input
The input consists of a number of test cases. Each case consists of two lines: the first line contains a positive integer n (n <= 5000); the next line contains a permutation of the n integers from 0 to n-1.
Output
For each case, output the minimum inversion number on a single line.
Sample Input
10 1 3 6 9 0 8 5 7 4 2
Sample Output
16
Author
CHEN, Gaoli
Source
题意:给定一个长度为n的数组,那么每次将第一个元素放在最后一个能形成n个长度为n的数组,求出所有情况中逆序对最少的个数。
解题思路:设当前第一个元素为x,那么比它小的有x个元素,比它大的有n-x-1个元素,将它放到数组最后对逆序对的变化是n-2*x-1个。那么我们只要枚举这个分开的位置m就行了。
树状数组:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <stack>
#include <queue>
#include <cmath>
#include <algorithm>
using namespace std;
const int MAXN=5050;
int f[MAXN],a[MAXN];;
int n;
int lowbit(int x)
{
return x&(-x);
}
void add(int x,int val)
{
while(x<=n)
{
f[x]+=val;
x+=lowbit(x);
}
}
int getsum(int x)
{
int s=0;
while(x>0)
{
s+=f[x];
x-=lowbit(x);
}
return s;
}
int main()
{
while(~scanf("%d",&n))
{
int ans=0;
memset(f,0,sizeof(f));
for(int i=1;i<=n;i++)
{
scanf("%d",&a[i]);
a[i]++;
ans+=getsum(n)-getsum(a[i]);
add(a[i],1);
}
int mi=ans;
for(int i=1;i<=n;i++)
{
ans+=n-a[i]-(a[i]-1);
if(ans<mi) mi=ans;
}
printf("%d\n",mi);
}
return 0;
}
#include <iostream>
#include <stdio.h>
#include <string.h>
using namespace std;
int main()
{
int a[5009],sum[5009];
int n;
while(~scanf("%d",&n))
{
for(int i=0;i<n;i++)
scanf("%d",&a[i]);
memset(sum,0,sizeof sum);
for(int i=0;i<n-1;i++)
{
for(int j=i+1;j<n;j++)
if(a[j]<a[i]) sum[i]++;
}
int ans=0;
for(int i=0;i<n;i++)
ans+=sum[i];
int t=ans;
for(int i=0;i<n-1;i++)
{
t=t-sum[i]+n-1-sum[i];
for(int j=i+1;j<n;j++)
if(a[i]<a[j]) sum[j]++;
if(t<ans) ans=t;
}
printf("%d\n",ans);
}
return 0;
}