Pseudoforest
Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total Submission(s): 2701 Accepted Submission(s): 1068
Problem Description
In graph theory, a pseudoforest is an undirected graph in which every connected component has at most one cycle. The maximal pseudoforests of G are the pseudoforest subgraphs of G that are not contained within any larger pseudoforest of G. A pesudoforest is larger than another if and only if the total value of the edges is greater than another one’s.
Input
The input consists of multiple test cases. The first line of each test case contains two integers, n(0 < n <= 10000), m(0 <= m <= 100000), which are the number of the vertexes and the number of the edges. The next m lines, each line consists of three integers, u, v, c, which means there is an edge with value c (0 < c <= 10000) between u and v. You can assume that there are no loop and no multiple edges.
The last test case is followed by a line containing two zeros, which means the end of the input.
The last test case is followed by a line containing two zeros, which means the end of the input.
Output
Output the sum of the value of the edges of the maximum pesudoforest.
Sample Input
3 3 0 1 1 1 2 1 2 0 1 4 5 0 1 1 1 2 1 2 3 1 3 0 1 0 2 2 0 0
Sample Output
3 5
Source
题目意思就是给出一个图,要求出最大的pseudoforest, 所谓pseudoforest就是指这个图的一个子图,这个子图的每个连通分量中最多只能有一个环, 而且这个子图的所有权值之和最大。这个就是所谓的伪森林。
#include <iostream>
#include <string.h>
#include <stdio.h>
#include <algorithm>
using namespace std;
int n,m,k;
int parent[10009];
int visit[10009];
int sum,ans;
struct node
{
int a,b,w;
}edge[100009];
int Find(int x)
{
int s=x;
while(parent[s]>=0) s=parent[s];
while(s!=x)
{
int tmp=parent[x];
parent[x]=s;
x=tmp;
}
return s;
}
int cmp(node a,node b)
{
return a.w>b.w;
}
int main()
{
while(~scanf("%d %d",&n,&m))
{
if(n==0&&m==0) break;
sum=0;
memset(visit,0,sizeof visit);
memset(parent,-1,sizeof parent);
for(int i=0; i<m; i++)
scanf("%d %d %d",&edge[i].a,&edge[i].b,&edge[i].w);
sort(edge,edge+m,cmp);
for(int i=0; i<m; i++)
{
int a1=Find(edge[i].a),b1=Find(edge[i].b);
if(a1==b1&&!visit[a1])
{
sum+=edge[i].w;visit[a1]=1;
}
else
{
if(visit[a1]&&visit[b1]) continue;
if((!visit[a1]&&visit[b1])||(!visit[b1]&&visit[a1]))
{
int a1=Find(edge[i].a),b1=Find(edge[i].b);
parent[a1]=b1;
sum+=edge[i].w;
visit[a1]=1;visit[b1]=1;
}
else if(!visit[a1]&&!visit[b1])
{
int a1=Find(edge[i].a),b1=Find(edge[i].b);
parent[a1]=b1;
sum+=edge[i].w;
}
}
}
printf("%d\n",sum);
}
return 0;
}