HDU3367-Pseudoforest

本文介绍了一种求解最大伪森林问题的算法实现,通过输入顶点和边的数据,利用并查集和贪心策略找到图中每个连通分量最多只包含一个环的最大权重子图。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Pseudoforest

                                                                           Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
                                                                                                        Total Submission(s): 2701    Accepted Submission(s): 1068

Problem Description
In graph theory, a pseudoforest is an undirected graph in which every connected component has at most one cycle. The maximal pseudoforests of G are the pseudoforest subgraphs of G that are not contained within any larger pseudoforest of G. A pesudoforest is larger than another if and only if the total value of the edges is greater than another one’s.

 
Input
The input consists of multiple test cases. The first line of each test case contains two integers, n(0 < n <= 10000), m(0 <= m <= 100000), which are the number of the vertexes and the number of the edges. The next m lines, each line consists of three integers, u, v, c, which means there is an edge with value c (0 < c <= 10000) between u and v. You can assume that there are no loop and no multiple edges.
The last test case is followed by a line containing two zeros, which means the end of the input.
 
Output
Output the sum of the value of the edges of the maximum pesudoforest.
 
Sample Input
  
3 3 0 1 1 1 2 1 2 0 1 4 5 0 1 1 1 2 1 2 3 1 3 0 1 0 2 2 0 0
 
Sample Output
  
3 5

Source

题目意思就是给出一个图,要求出最大的pseudoforest, 所谓pseudoforest就是指这个图的一个子图,这个子图的每个连通分量中最多只能有一个环, 而且这个子图的所有权值之和最大。这个就是所谓的伪森林。


#include <iostream>
#include <string.h>
#include <stdio.h>
#include <algorithm>

using namespace std;

int n,m,k;
int parent[10009];
int visit[10009];
int sum,ans;

struct node
{
    int a,b,w;
}edge[100009];

int Find(int x)
{
    int s=x;
    while(parent[s]>=0) s=parent[s];
    while(s!=x)
    {
        int tmp=parent[x];
        parent[x]=s;
        x=tmp;
    }
    return s;
}

int cmp(node a,node b)
{
    return a.w>b.w;
}

int main()
{
    while(~scanf("%d %d",&n,&m))
    {
        if(n==0&&m==0) break;
        sum=0;
        memset(visit,0,sizeof visit);
        memset(parent,-1,sizeof parent);
        for(int i=0; i<m; i++)
            scanf("%d %d %d",&edge[i].a,&edge[i].b,&edge[i].w);
        sort(edge,edge+m,cmp);
        for(int i=0; i<m; i++)
        {
            int a1=Find(edge[i].a),b1=Find(edge[i].b);
            if(a1==b1&&!visit[a1])
            {
                sum+=edge[i].w;visit[a1]=1;
            }
            else
            {
                if(visit[a1]&&visit[b1]) continue;
                if((!visit[a1]&&visit[b1])||(!visit[b1]&&visit[a1]))
                {
                    int a1=Find(edge[i].a),b1=Find(edge[i].b);
                    parent[a1]=b1;
                    sum+=edge[i].w;
                    visit[a1]=1;visit[b1]=1;
                }
                else if(!visit[a1]&&!visit[b1])
                {
                    int a1=Find(edge[i].a),b1=Find(edge[i].b);
                    parent[a1]=b1;
                    sum+=edge[i].w;
                }
            }
        }
        printf("%d\n",sum);
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值