Ultra-QuickSort
Time Limit: 7000MS | Memory Limit: 65536K | |
Total Submissions: 56022 | Accepted: 20697 |
Description

Ultra-QuickSort produces the output
Your task is to determine how many swap operations Ultra-QuickSort needs to perform in order to sort a given input sequence.
Input
The input contains several test cases. Every test case begins with a line that contains a single integer n < 500,000 -- the length of the input sequence. Each of the the following n lines contains a single integer 0 ≤ a[i] ≤ 999,999,999, the i-th input sequence element. Input is terminated by a sequence of length n = 0. This sequence must not be processed.
Output
For every input sequence, your program prints a single line containing an integer number op, the minimum number of swap operations necessary to sort the given input sequence.
Sample Input
5 9 1 0 5 4 3 1 2 3 0
Sample Output
6 0
Source
题意:给出长度为n的序列,每次只能交换相邻的两个元素,问至少要交换几次才使得该序列为递增序列。
解题思路:一个乱序序列的 逆序数 = 在只允许相邻两个元素交换的条件下,得到有序序列的交换次数
#include <iostream>
#include <cstdio>
#include <cstring>
#include <stack>
#include <queue>
#include <cmath>
#include <algorithm>
using namespace std;
const int maxn=501000;
struct node
{
long long int x;
int y;
}a[maxn];
int n,b[maxn],t;
long long int f[maxn];
bool cmp(node a,node b)
{
return (a.x<b.x||(a.x==b.x && a.y<b.y));
}
int lowb(int x)
{
return x&(-x);
}
long long q(int x)
{
long long int tmp=0;
while (x>0)
{
tmp+=f[x];
x-=lowb(x);
}
return tmp;
}
void add(int x)
{
while(x<=n)
{
f[x]++;
x+=lowb(x);
}
}
int main()
{
while(~scanf("%d",&n)&&n)
{
for (int i=1; i<=n; i++)
{
scanf("%I64d",&a[i].x);
a[i].y=i;
}
t=0;
sort(a+1,a+1+n,cmp);
a[0].x=-1;
for (int i=1;i<=n;i++)
{
if (a[i].x!=a[i-1].x) t++;
b[a[i].y]=t;
}
memset(f,0,sizeof(f));
long long int ans=0;
for (int i=1;i<=n;i++)
{
ans+=(q(n)-q(b[i]));
add(b[i]);
}
cout<<ans<<endl;
}
return 0;
}