Konig定理:
二分图的最小顶点覆盖数等于最大匹配数。
证明:
比如最大匹配是M。为了求最少的点让每条边都至少和其中一个点关联。
M个点是足够的。就是说他们覆盖最大匹配的那M条边后,假设有某边e没被覆盖,那么把e加入后会得到一个更大的匹配,出现矛盾。
M个点是必需的。匹配的M条边,由于他们两两无公共点,就是说至少有M个点才能把他们覆盖。
二分图的最小顶点覆盖数等于最大匹配数。
证明:
比如最大匹配是M。为了求最少的点让每条边都至少和其中一个点关联。
M个点是足够的。就是说他们覆盖最大匹配的那M条边后,假设有某边e没被覆盖,那么把e加入后会得到一个更大的匹配,出现矛盾。
M个点是必需的。匹配的M条边,由于他们两两无公共点,就是说至少有M个点才能把他们覆盖。
本文深入解析了Konig定理的核心内容,即在二分图中,最小顶点覆盖数等于最大匹配数。通过详细证明过程,展示了如何从最大匹配出发推导出最少覆盖点的数量,以及为何这些点能够覆盖所有边。
1882

被折叠的 条评论
为什么被折叠?



