Pytorch模型在转换成onnx模型后可以明显加速,此外模型在进行openvino部署时也需要将pytorch模型转换为onnx格式。为此,以多输入多输出模型为例,记录一下模型转换及python下onnxruntime调用过程。并实现C++下多输入多输出模型的Onnxruntime的调用。
一 、python下模型转onnx与测试
1.1、构建pytorch多输入多输出模型
import torch
import torch.nn as nn
import torch.nn.functional as F
class MyModel(nn.Module):
def __init__(self):
super(MyModel, self).__init__()
self.conv1 = nn.Conv2d(6, 16, kernel_size=1, stride=1, padding=0)
self.relu = nn.ReLU()
self.conv2 = nn.Conv2d(16, 16, kernel_size=1, stride=1, padding=0)
self.conv31 = nn.Conv2d(16, 3, kernel_size=1, stride=1, padding=0)
self.conv32 = nn.Conv2d(16, 3, kernel_size&