图像邻域操作与滤波技术详解
1. 零相位递归共振滤波器
零相位递归共振滤波器的分母在式(9.61)中与式(9.60)相同,只是按(\cos(n\pi\tilde{k} 0))展开。其对应的递归滤波器系数为:
[g’_n = (1 - r^2)\sin(\pi\tilde{k}_0)g_n + 2r\cos(\pi\tilde{k}_0)g’ {n\mp1} - r^2g’ {n\mp2}]
当共振波数(\tilde{k}_0 = 1/2)时,递归滤波器简化为:
[g’_n = (1 - r^2)g_n - r^2g’ {n\mp2} = g_n - r^2(g_n + g’_{n\mp2})]
其传递函数为:
[\hat{s}(\tilde{k}) = \frac{(1 - r^2)^2}{1 + r^4 + 2r^2\cos(2\pi\tilde{k})}]
该滤波器在(\tilde{k} = 1/2)处的最大响应为 1,在(\tilde{k} = 0)和(\tilde{k} = 1)处的最小响应为(((1 - r^2)/(1 + r^2))^2)。此共振滤波器是二阶微分方程(\ddot{y} + 2\tau\dot{y} + \omega_0^2y = 0)所描述的线性系统(阻尼谐波振荡器)的离散模拟。实际振荡器的圆本征频率(\omega_0)和时间常数(\tau)与离散振荡器的参数(r)和(\tilde{k}_0)的关系为:
[r = \exp(-\Delta t/\tau)]
[\tilde{k}_0 = \omega_0\Delta t/\pi]
超级会员免费看
订阅专栏 解锁全文

被折叠的 条评论
为什么被折叠?



