1067. Sort with Swap(0,*) (25)
Given any permutation of the numbers {0, 1, 2,..., N-1}, it is easy to sort them in increasing order. But what if Swap(0, *) is the ONLY operation that is allowed to use? For example, to sort {4, 0, 2, 1, 3} we may apply the swap operations in the following way:
Swap(0, 1) => {4, 1, 2, 0, 3}
Swap(0, 3) => {4, 1, 2, 3, 0}
Swap(0, 4) => {0, 1, 2, 3, 4}
Now you are asked to find the minimum number of swaps need to sort the given permutation of the first N nonnegative integers.
Input Specification:
Each input file contains one test case, which gives a positive N (<=105) followed by a permutation sequence of {0, 1, ..., N-1}. All the numbers in a line are separated by a space.
Output Specification:
For each case, simply print in a line the minimum number of swaps need to sort the given permutation.
Sample Input:10 3 5 7 2 6 4 9 0 8 1Sample Output:
9
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <vector>
#include <map>
#include <set>
#include <stack>
#include <queue>
#include <string>
#include <string.h>
using namespace std;
const int MAX = 1e5+10;
int n, num, an, cnt, ind=1, l[MAX];
int main() {
scanf("%d", &n);
for(int i=0; i<n; i++){
scanf("%d",&num);
l[num] = i;
if(i!=num && num!=0) an++;
}
while(an>0){
if(l[0]==0){//零在第零个位置
while(ind<n){
if(l[ind]!=ind){
swap(l[ind], l[0]);
cnt++;
break;
}
ind++;
}
}
while(l[0]!=0){
swap(l[l[0]], l[0]);
cnt++;
an--;
}
}
printf("%d", cnt);
scanf("%d",&n);
return 0;
}