要求点P到直线L的最短距离,可以使用以下方法:
1. 计算出直线L上任意一点Q和P之间的向量v。
2. 将向量v投影到与直线L垂直的方向上,得到向量w。
3. 直线L上的某一点M加上向量w,就是点P在直线L上的映射点N。
代码实现如下:
#include <iostream>
#include <cmath>
using namespace std;
struct Point {
double x, y, z;
};
struct Line {
Point p1, p2;
};
double distance(Point p, Line l) {
double dx = l.p2.x - l.p1.x;
double dy = l.p2.y - l.p1.y;
double dz = l.p2.z - l.p1.z;
double t = ((p.x - l.p1.x) * dx + (p.y - l.p1.y) * dy + (p.z - l.p1.z) * dz) / (dx * dx + dy * dy + dz * dz);
Point projection = {l.p1.x + t * dx, l.p1.y + t * dy, l.p1.z + t * dz};
return sqrt((projection.x - p.x) * (projection.x - p.x) + (projection.y - p.y) * (projection.y - p.y) + (projection.z - p.z) * (projection.z - p.z));
}
Point projection(Point p, Line l) {
double dx = l.p2.x - l.p1.x;
double dy = l.p2.y - l.p1.y;
double dz = l.p2.z - l.p1.z;
double t = ((p.x - l.p1.x) * dx + (p.y - l.p1.y) * dy + (p.z - l.p1.z) * dz) / (dx * dx + dy * dy + dz * dz);
Point projection = {l.p1.x + t * dx, l.p1.y + t * dy, l.p1.z + t * dz};
return projection;
}
int main() {
Point p = {1, 2, 3};
Line l = {{0, 0, 0}, {1, 1, 1}};
cout << "The distance between point P and line L is: " << distance(p, l) << endl;
Point projection_point = projection(p, l);
cout << "The projection point of point P on line L is: (" << projection_point.x << ", " << projection_point.y << ", " << projection_point.z << ")" << endl;
return 0;
}
在上述代码中,distance函数计算了点P到直线L的最短距离,而projection函数计算了点P在直线L上的映射点。