题意
在ICPC比赛现场,有N个点,M条路。每个点有s[i]个人和b[i]个面包,每条路上都有插线板,最多允许通过c[i]个人,每个人通过的时候有p[i]的概率会提到插线板,踢到插线板会使网络故障,但是每条路第一个人通过的时候一定不会踢到插线板。问使得每个人都能吃上面包且网络不发生故障的最大概率。保证有解。
思路
明显的费用流。最大不故障的概率 = 1 - 最小故障的概率,这样就可以求最小费用了。但是正常的费用流的费用是符合加法的,而本题的费用是乘起来的。我们应该吧乘法转化为加法,很容易就想到使用对数函数就OK了,最终答案我们在求回来即可。建图如下:
建立超级源点s,超级汇点 t
1. s 往人比面包多的点连边,容量为s[i]-b[i],费用为0
2.面包比人多的点往 t 连边, 容量为b[i]-s[i],费用为0
3.原图中的边,容量为c[i],费用为
求得最小花费cost,答案为 。
对了,记得SPFA的松弛步骤中需要加eps修正,否则会超时。
#include<bits/stdc++.h>
using namespace std;
const int MAXN = 1e5 + 5;
const int INF = 0x3f3f3f3f;
const double eps = 1e-7;
struct Edge
{
int from, to, cap, flow; double cost; //起点,终点,容量,流量,花费
Edge(int u, int v, int c, int f, double w):from(u), to(v), cap(c), flow(f), cost(w) {}
};
struct MCMF
{
int n, m; //结点数,边数(包括反向弧),源点s,汇点t
vector<Edge> edges; //边表。edges[e]和edges[e^1]互为反向弧
vector<int> G[MAXN]; //邻接表,G[i][j]表示结点i的第j条边在edges数组中的序号
bool inq[MAXN]; //是否在队列中
double d[MAXN]; //Bellman-Ford
int p[MAXN]; //上一条弧
int a[MAXN]; //可改进量
void init(int n)
{
this->n = n;
edges.clear();
for (int i = 0; i <= n; i++) G[i].clear();
}
void AddEdge(int from, int to, int cap, double cost)
{
edges.push_back(Edge(from, to, cap, 0, cost));
edges.push_back(Edge(to, from, 0, 0, -cost));
m = edges.size();
G[from].push_back(m - 2);
G[to].push_back(m - 1);
}
bool BellmanFord(int s, int t, int &flow, double& cost)//SPFA
{
for (int i = 0; i <= n; i++) d[i] = INF, inq[i] = false;
d[s] = 0; inq[s] = true; p[s] = 0; a[s] = INF;
queue<int> Q;
Q.push(s);
while (!Q.empty())
{
int u = Q.front(); Q.pop();
inq[u] = 0;
for (int i = 0; i < G[u].size(); i++)
{
Edge& e = edges[G[u][i]];
if (e.cap > e.flow && d[e.to] > d[u] + e.cost + eps)
{
d[e.to] = d[u] + e.cost;
p[e.to] = G[u][i];
a[e.to] = min(a[u], e.cap - e.flow);
if (!inq[e.to]) { Q.push(e.to); inq[e.to] = true; }
}
}
}
if (d[t] == INF) return false;
flow += a[t];
cost += d[t] * a[t];
for (int u = t; u != s; u = edges[p[u]].from)
{
edges[p[u]].flow += a[t];
edges[p[u]^1].flow -= a[t];
}
return true;
}
int MinCostMaxFlow(int s, int t, double& cost)
{
int flow = 0; cost = 0;
while (BellmanFord(s, t, flow, cost));
return flow;
}
}solve;
int main()
{
int T; scanf("%d", &T);
while (T--)
{
int n, m; scanf("%d%d", &n, &m);
int s = 0, t = n + 1;
solve.init(t);
for (int i = 1; i <= n; i++)
{
int a, b; scanf("%d%d", &a, &b);
if (a > b) solve.AddEdge(s, i, a-b, 0);
else solve.AddEdge(i, t, b-a, 0);
}
for (int i = 1; i <= m; i++)
{
int a, b, c; double d; scanf("%d%d%d%lf", &a, &b, &c, &d);
d = -log(1-d);
solve.AddEdge(a, b, 1, 0);
if (c > 1) solve.AddEdge(a, b, c-1, d);
}
double cost;
solve.MinCostMaxFlow(s, t, cost);
double ans = 1-exp(-cost);
printf("%.2f\n", ans);
}
return 0;
}
/*
1
4 4
2 0
0 3
3 0
0 3
1 2 5 0.5
3 2 5 0.5
1 4 5 0.5
3 4 5 0.5
*/