2016ACM/ICPC亚洲区青岛站 G - Coding Contest (最小费用最大流)

本文介绍了一种解决特定场景下的最小费用最大流问题的方法,该问题涉及在一张包含多个节点(代表桌子)的网络中分配食物给参赛者,同时需要考虑节点间的路径容量限制以及通过这些路径可能带来的额外成本(如损坏网络连接的概率)。文章详细解释了如何构建模型、使用对数转换简化计算,并提供了一个完整的C++代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

A coding contest will be held in this university, in a huge playground. The whole playground would be divided into N blocks, and there would be M directed paths linking these blocks. The i-th path goes from the uiui-th block to the vivi-th block. Your task is to solve the lunch issue. According to the arrangement, there are sisi competitors in the i-th block. Limited to the size of table, bibi bags of lunch including breads, sausages and milk would be put in the i-th block. As a result, some competitors need to move to another block to access lunch. However, the playground is temporary, as a result there would be so many wires on the path. 
For the i-th path, the wires have been stabilized at first and the first competitor who walker through it would not break the wires. Since then, however, when a person go through the i - th path, there is a chance of pipi to touch 
the wires and affect the whole networks. Moreover, to protect these wires, no more than cici competitors are allowed to walk through the i-th path. 
Now you need to find a way for all competitors to get their lunch, and minimize the possibility of network crashing. 
Input
The first line of input contains an integer t which is the number of test cases. Then t test cases follow. 
For each test case, the first line consists of two integers N (N ≤ 100) and M (M ≤ 5000). Each of the next N lines contains two integers si and bibi (sisi , bibi ≤ 200). 
Each of the next M lines contains three integers uiui , vivi and ci(cici(ci ≤ 100) and a float-point number pipi(0 < pipi < 1). 
It is guaranteed that there is at least one way to let every competitor has lunch.
Output
For each turn of each case, output the minimum possibility that the networks would break down. Round it to 2 digits.
Sample Input
1
4 4
2 0
0 3
3 0
0 3
1 2 5 0.5
3 2 5 0.5
1 4 5 0.5
3 4 5 0.5
Sample Output
0.50

题意:以桌子为节点,每张桌子上有s个选手,b袋食物,要让所有的选手都能吃上食物,然后选手在桌子连成的边 上有容量,而且除了第一次路过以外,有pi的概率破坏现场的网线(跟字面意思)。求所有选手都吃上饭且最小破坏线路的概率。

处理初始节点的时候,建立一个源点跟汇点,让 s - b > 0及选手没饭吃的连源点, s - b < 0 桌子上有饭的连汇点。
概率求我们可以 1 - (最大不破坏线路的概率) = 最小破坏线路的概率 ,用概率来代表花费。
因为求概率是乘,最短(长)路的松弛是加减。。所以取log后再跑最短路,然后最后再开方就好了。

#include <cstdio>
#include <cstring>
#include <iostream>
#include <queue>
#include <algorithm>
#include <vector>
#include <cmath>
#define INF 1e9
using namespace std;
const int maxn = 200 + 10;
const double esp = 1e-8;
struct Edge {
    int from, to, cap, flow;
    double cost;
    Edge(){}
    Edge(int f, int t, int c, int fl, double co) : from(f), to(t), cap(c), flow(fl), cost(co){}
};

struct MCMF {
    int n,m,s,t;
    vector<Edge> edges;
    vector<int> G[maxn];
    bool inq[maxn];     //是否在队列
    double d[maxn];        //Bellman_ford单源最短路径
    int p[maxn];        //p[i]表从s到i的最小费用路径上的最后一条弧编号
    int a[maxn];        //a[i]表示从s到i的最小残量
    
        //初始化
    void init(int n,int s,int t) {
        this->n = n, this->s = s, this->t = t;
        edges.clear();
        for (int i = 0; i < n; ++i)
            G[i].clear();
    }
    
        //添加一条有向边
    void AddEdge(int from, int to, int cap, double cost) {
        edges.push_back(Edge(from, to, cap, 0, cost));
        edges.push_back(Edge(to, from, 0, 0, -cost));
        m = edges.size();
        G[from].push_back(m - 2);
        G[to].push_back(m - 1);
    }
    
        //求一次增广路
    bool BellmanFord(int &flow, double &cost) {
        for (int i = 0; i < n; ++i)
            d[i] = INF;
        memset(inq, 0, sizeof(inq));
        d[s] = 0, a[s] = INF, inq[s] = true, p[s] = 0;
        queue<int> Q;
        Q.push(s);
        while (!Q.empty()) {
            int u = Q.front();
            Q.pop();
            inq[u] = false;
            for (int i = 0; i < G[u].size(); ++i) {
                Edge &e = edges[G[u][i]];
                if (e.cap > e.flow && d[e.to] - d[u] - e.cost > esp) {
                    d[e.to] = d[u] + e.cost;
                    p[e.to] = G[u][i];
                    a[e.to] = min(a[u] ,e.cap - e.flow);
                    if (!inq[e.to]) {
                        Q.push(e.to);
                        inq[e.to] = true;
                    }
                }
            }
        }
        if (d[t] == INF)
            return false;
        flow += a[t];
        cost += a[t] * d[t];
        int u = t;
        while (u != s) {
            edges[p[u]].flow += a[t];
            edges[p[u] ^ 1].flow -= a[t];
            u = edges[p[u]].from;
        }
        return true;
    }
    
        //求出最小费用最大流
    double Min_cost() {
        int flow = 0;
        double cost = 0.0;
        while (BellmanFord(flow, cost));
        return cost;
    }
}MM;
int main() {
        //freopen("in.txt", "r", stdin);
    int t;
    scanf("%d", &t);
    while (t--) {
        int n, m;
        scanf("%d%d", &n, &m);
        MM.init(n + 5, 0, n + 1);
        for (int i = 1; i <= n; ++i) {
            int s, b, temp;
            scanf("%d%d", &s, &b);
            temp = s - b;
            if (temp > 0) {
                MM.AddEdge(0, i, temp, 0);
            } else if (temp < 0) {
                MM.AddEdge(i, n + 1, -temp, 0);
            }
        }
        for (int i = 0; i < m; ++i) {
            int u, v, w;
            double cost;
            scanf("%d%d%d%lf", &u, &v, &w, &cost);
            if (w - 1 > 0)
                MM.AddEdge(u, v, w - 1, -log2(1 - cost));
            if (w > 0)
                MM.AddEdge(u, v, 1, 0);
        }
        double c;
        c = MM.Min_cost();
        printf("%.2lf\n", 1.0 - pow(2, -c));
    }
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值