Dijkstra:
复杂度:,优先队列优化
。
优点:稳定。
缺点:不能有负权。
优先队列:
#include<bits/stdc++.h>
using namespace std;
const int MAXN = 105;
const int INF = 0x3f3f3f3f;
struct Edge
{
int from, to, dist;
Edge() {}
Edge(int u, int v, int d) : from(u), to(v), dist(d) {}
};
struct Dijkstra
{
int n, m; // 点数和边数
vector<Edge> edges; // 边列表
vector<int> G[MAXN]; // 每个节点出发的边编号(从0开始编号)
bool done[MAXN]; // 是否已永久标号
int d[MAXN]; // s到各点的距离
int p[MAXN]; // p[i]表示最短路径树中到达i点的边的编号
void init(int n)
{
this->n = n, m = 0;
edges.clear(); // 清空边表
for (int i = 0; i <= n; i++) G[i].clear(); // 清空邻接表
}
void AddEdge(int from, int to, int dist)
{ // 如果是无向图,每条无向边需调用两次AddEdge
edges.emplace_back(from, to, dist);
m = edges.size();
G[from].push_back(m - 1);
}
struct HeapNode
{
int d, u;
bool operator < (const HeapNode& rhs) const
{
return d > rhs.d;
}
};
void dijkstra(int s)
{
priority_queue<HeapNode> q;
for (int i = 0; i <= n; i++) d[i] = INF;
d[s] = 0;
memset(done, 0, sizeof(done));
q.push({0, s});
while (!q.empty())
{
HeapNode x = q.top();
q.pop();
int u = x.u;
if (done[u]) continue;
done[u] = true;
for (auto& id : G[u])
{
Edge& e = edges[id];
if (d[e.to] > d[u] + e.dist)
{
d[e.to] = d[u] + e.dist;
p[e.to] = id;
q.push({d[e.to], e.to});
}
}
}
}
}gao;
int n, m;
int main()
{
while (~scanf("%d%d", &n, &m) && (n+m))
{
gao.init(n);
while (m--)
{
int u, v, w;
scanf("%d%d%d", &u, &v, &w);
gao.AddEdge(u, v, w);
gao.AddEdge(v, u, w);
}
gao.dijkstra(1);
printf("%d\n", gao.d[n]);
}
return 0;
}
/*
2 1
1 2 3
3 3
1 2 5
2 3 5
3 1 2
0 0
*/
//Answer:3 2
常规:
注意编号为从1到N。
#include<bits/stdc++.h>
using namespace std;
const int MAXN = 105;
const int INF = 0x3f3f3f3f;
struct Edge
{
int from, to, dist;
Edge() {}
Edge(int u, int v, int d) : from(u), to(v), dist(d) {}
};
struct Dijkstra
{
int n, m; // 点数和边数
vector<Edge> edges; // 边列表
vector<int> G[MAXN]; // 每个节点出发的边编号(从0开始编号)
bool done[MAXN]; // 是否已永久标号
int d[MAXN]; // s到各点的距离
int p[MAXN]; // p[i]表示最短路径树中到达i点的边的编号
void init(int n)
{
this->n = n, m = 0;
edges.clear(); // 清空边表
for (int i = 0; i <= n; i++) G[i].clear(); // 清空邻接表
}
void AddEdge(int from, int to, int dist)
{ // 如果是无向图,每条无向边需调用两次AddEdge
edges.emplace_back(from, to, dist);
m = edges.size();
G[from].push_back(m - 1);
}
void dijkstra(int s)
{
for (int i = 0; i <= n; i++) d[i] = INF;
d[s] = 0;
memset(done, 0, sizeof(done));
for (int i = 1; i <= n; i++)
{
int pos, MIN = INF;
for (int j = 1; j <= n; j++)
{
if(!done[j] && d[j] <= MIN) MIN = d[pos = j];
}
done[pos] = true;
for (auto id : G[pos])
{
Edge& e = edges[id];
if (d[e.to] > d[pos] + e.dist)
{
d[e.to] = d[pos] + e.dist;
p[e.to] = id;
}
}
}
}
}gao;
int n, m;
int main()
{
while (~scanf("%d%d", &n, &m) && (n+m))
{
gao.init(n);
while (m--)
{
int u, v, w;
scanf("%d%d%d", &u, &v, &w);
gao.AddEdge(u, v, w);
gao.AddEdge(v, u, w);
}
gao.dijkstra(1);
printf("%d\n", gao.d[n]);
}
return 0;
}
/*
2 1
1 2 3
3 3
1 2 5
2 3 5
3 1 2
0 0
*/
//Answer:3 2