(Floyd模板,最短路+传递闭包)

本文介绍了一种用于解决图中所有顶点对最短路径问题的经典算法——Floyd算法。该算法能够处理包含负权边的图,并能计算图的传递闭包。尽管其时间复杂度较高,但在某些特定场景下仍十分有用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


Floyd:

复杂度:

优点:可以处理负权,可以传递闭包

缺点:复杂度太高。

void Floyd(int n)
{
	for (int k = 0; k < n; k++)
	{
		for (int k = 0; k < n; k++)
		{
			for (int k = 0; k < n; k++)
			{
				d[i][j] = min(d[i][j], d[i][k] + d[k][j]);
				/*
				有向图的传递闭包 
				d[i][j] = d[i][j] || (d[i][k] && d[k][j]);
				*/
			}
		}
	}
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值