题意:输入S,N表示有N个哨所要通信,现在有S课卫星。然后输入N个点的坐标。有卫星的两个哨所之间可以任意通信(卫星是你分配的);否则,一个哨所只能和距离它小于等于D的哨所通信。求D的最小值?
思路:其实就是求最小生成树,删掉S条边以后,最长的边的边权为多少?因为一定能形成最小生成树,所以我们在建立最小生成树的时候,本来需要建立N-1条边,那么现在只需要建立N-1-(S-1)条边即可。输出最后一条边的长度。
//#include<bits/stdc++.h>
#include<iostream>
#include<cstdio>
#include<cmath>
#include<algorithm>
using namespace std;
const int MAXN = 1005;
const int MAXM = 1005 * 1005;
int n, s, m, f[MAXN];
struct Point
{
int x, y;
}point[MAXN];
struct Edge
{
int u, v;
double w;
bool operator < (const Edge& A) const
{
return w < A.w;
}
}edge[MAXM];
double dis(int a, int b)
{
return sqrt(pow(point[a].x - point[b].x, 2) + pow(point[a].y - point[b].y, 2));
}
void init()
{
for (int i = 0; i <= n; i++) f[i] = i;
}
int Find(int x){ return f[x] == x ? x : f[x] = Find(f[x]); }
double kruskal()
{
init();
sort(edge, edge + m);
int cnt = 0;
for (int i = 0; i < m; i++)
{
int u = edge[i].u, v = edge[i].v;
double w = edge[i].w;
int root1 = Find(u), root2 = Find(v);
if (root1 != root2)
{
f[root1] = root2;
cnt++;
if (cnt == n - 1 - (s - 1)) return w;
}
}
return -1.0;
}
int main()
{
int T;
scanf("%d", &T);
while (T--)
{
m = 0;
scanf("%d%d", &s, &n);
for (int i = 0; i < n; i++) scanf("%d%d", &point[i].x, &point[i].y);
for (int i = 0; i < n; i++)
{
for (int j = i + 1; j < n; j++)
{
edge[m].u = i; edge[m].v = j; edge[m].w = dis(i, j);
m++;
}
}
printf("%.2f\n", kruskal());
}
return 0;
}
/*
1
2 4
0 100
0 300
0 600
150 750
*/