paddle2.2.0:policy gradient算法实现

本文介绍了如何使用策略梯度算法(Policy Gradient)在PyTorch中训练agent,该方法直接输出动作概率,相较于DQN的Q值策略,它能更快地收敛并实现更高得分。展示了从模型定义、算法实现到训练过程的详细步骤,并展示了算法在CartPole-v0环境中的快速提升表现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

        在前面的博客中,我们使用了DQN等算法训练了agent并得到了较高的分数。DQN中的神经网络是输出的动作Q值,然后通过哪个Q值更大,就采取相应的动作,可我们为什么不直接让神经网络输出动作(概率),一步到位呢。而Policy Gradient就可以一步到位。

import paddle
import paddle.nn as nn
import paddle.nn.functional as F
import parl
import numpy as np
import gym
from parl.utils import logger
from paddle.distribution import Categorical

LEARNING_RATE = 1e-3

class Model(parl.Model):
    def __init__(self, obs_dim, act_dim):
        super().__init__()
        hid1_size = act_dim * 10
        self.fc1 = nn.Linear(obs_dim, hid1_size)
        self.fc2 = nn.Linear(hid1_size, act_dim)

    def forward(self, obs):
        out = F.tanh(self.fc1(obs))
        out = F.softmax(self.fc2(out))
        return out

class PolicyGradient(parl.Algorithm):
    def __init__(self, model, lr=None):
        self.model = model
        assert isinstance(lr, float)
        self.optimizer = paddle.optimizer.Adam(learning_rate=lr, parameters=model.parameters())

    def predict(self, obs):
        return self.model(obs)

    def learn(self, obs, act, reward):
        # act_prob = self.model(obs)
        # log_prob = F.cross_entropy(act_prob, act)
        # loss = log_prob.mean()
        # self.optimizer.clear_grad()
        # loss.backward()
        # self.optimizer.step()
        prob = self.model(obs)
        log_prob = Categorical(prob).log_prob(act)
        loss = paddle.mean(-1 * log_prob * reward)

        self.optimizer.clear_grad()
        loss.backward()
        self.optimizer.step()
        return loss

class Agent(parl.Agent):
    def __init__(self, algorithm, obs_dim, act_dim):
        super().__init__(algorithm)
        self.obs_dim = obs_dim
        self.act_dim = act_dim


    def sample(self, obs):
        obs = paddle.to_tensor(obs, dtype='float32')
        act_prob = self.alg.predict(obs)
        act_prob = np.squeeze(act_prob, axis=0)
        
        act = np.random.choice(range(self.act_dim), p=act_prob.numpy())
        return act
    
    def predict(self, obs):
        obs = paddle.to_tensor(obs, dtype='float32')
        act_prob = self.alg.predict(obs)
        act = np.argmax(act_prob)
        return act

    def learn(self, obs, act, reward):
        act = np.expand_dims(act, axis=-1)
        reward = np.expand_dims(reward, axis=-1)

        obs = paddle.to_tensor(obs, dtype='float32')
        act = paddle.to_tensor(act, dtype='int32')
        reward = paddle.to_tensor(reward, dtype='float32')
        loss = self.alg.learn(obs, act, reward)
        return loss.numpy()[0]

def run_episode(env, agent):
    obs_list, action_list, reward_list = [], [], []
    obs = env.reset()
    while True:
        obs_li
### 关于 UniApp 框架推荐资源与教程 #### 1. **Uniapp 官方文档** 官方文档是最权威的学习资料之一,涵盖了从基础概念到高级特性的全方位讲解。对于初学者来说,这是了解 UniApp 架构技术细节的最佳起点[^3]。 #### 2. **《Uniapp 从入门到精通:案例分析与最佳实践》** 该文章提供了系统的知识体系,帮助开发者掌握 Uniapp 的基础知识、实际应用以及开发过程中的最佳实践方法。它不仅适合新手快速上手,也能够为有经验的开发者提供深入的技术指导[^1]。 #### 3. **ThorUI-uniapp 开源项目教程** 这是一个专注于 UI 组件库设计实现的教学材料,基于 ThorUI 提供了一系列实用的功能模块。通过学习此开源项目的具体实现方式,可以更好地理解如何高效构建美观且一致的应用界面[^2]。 #### 4. **跨平台开发利器:UniApp 全面解析与实践指南** 这篇文章按照章节形式详细阐述了 UniApp 的各个方面,包括但不限于其工作原理、技术栈介绍、开发环境配置等内容,并附带丰富的实例演示来辅助说明理论知识点。 以下是几个重要的主题摘选: - **核心特性解析**:解释了跨端运行机制、底层架构组成及其主要功能特点。 - **开发实践指南**:给出了具体的页面编写样例代码,展示了不同设备间 API 调用的方法论。 - **性能优化建议**:针对启动时间缩短、图形绘制效率提升等方面提出了可行策略。 ```javascript // 示例代码片段展示条件编译语法 export default { methods: { showPlatform() { console.log(process.env.UNI_PLATFORM); // 输出当前平台名称 #ifdef APP-PLUS console.log('Running on App'); #endif #ifdef H5 console.log('Running on Web'); #endif } } } ``` #### 5. **其他补充资源** 除了上述提到的内容外,还有许多在线课程视频可供选择,比如 Bilibili 上的一些免费系列讲座;另外 GitHub GitCode 平台上也有不少优质的社区贡献作品值得借鉴研究。 --- ###
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值