动态规划:数字三角形(线性DP-闫氏DP分析法)
数字三角形
www.acwing.com/problem/content/900/
DP:
-
状态表示:
f[i][j]
- 集合:只用前 i i i 层,且用了该层第 j j j 个数字的所有方案
- 属性:max value
-
状态计算: f [ i ] [ j ] = m a x ( f [ i − 1 ] [ j − 1 ] , f [ i − 1 ] [ j ] ) + a r r [ i ] [ j ] f[i][j] = max(f[i-1][j-1],f[i-1][j])+arr[i][j] f[i][j]=max(f[i−1][j−1],f[i−1][j])+arr[i][j]
- 不要从上往下看,应该从下往上看,看来时路。找第一个不同点
- 从左上来: f [ i ] [ j ] = f [ i − 1 ] [ j − 1 ] + a r r [ i ] [ j ] f[i][j]=f[i-1][j-1]+arr[i][j] f[i][j]=f[i−1][j−1]+arr[i][j]
- 从右上来: f [ i ] [ j ] = f [ i − 1 ] [ j ] + a r r [ i ] [ j ] f[i][j]=f[i-1][j]+arr[i][j] f[i][j]=f[i−1][j]+arr[i][j]
-
优化:需要上一层数据:从大到小
注意:因为有负数存在,应当考虑初始化问题,以及最后结果的选取
import java.util.*;
public class Main {
static final int N = 510;
static int f[] = new int[N];
static int[][] a = new int[N][N];
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= i; j++) {
a[i][j] = sc.nextInt();
}
}
// 注意负数的存在
Arrays.fill(f, -0x3f3f3f3f);
f[1] = 0;
for (int i = 1; i <= n; i++) {
for (int j = i; j > 0; j--) {
f[j] = Math.max(f[j - 1], f[j]) + a[i][j];
}
}
int res = -0x3f3f3f3f;
for (int i = 1; i <= n; i++) {
res = Math.max(res, f[i]);
}
System.out.println(res);
}
}