考虑本题如何暴力:
可以枚举用了多少个关键点,在确定关键点个数之后,就可以二分最小距离x了,至于二分的check是一个贪心的过程,显然,每次选择最深的那个点,然后向上找他的x级祖先,然后把祖先的子树删掉就好了。这样就可以暴力出来了
换个思路,我们设F(x)为最小距离为x时需要多少关键点,Ans[F(x)] = x 的意义就是,当花费F(x)个关键点的时候,最小距离为x,那么对Ans求和就好了。当然Ans[F(x)]需要求前缀min,为什么呢?有一个感性的理解,用的关键点越多,那么必然距离会有一个小于等于的关系。还有F(x)不一定覆盖所有的1-n,但是因为存在小于等于关系,所以可以全部求出。
//#define LOCAL
#include <bits/stdc++.h>
using namespace std;
#define ll long long
#define mem(a, b) memset(a,b,sizeof(a))
#define sz(a) (int)a.size()
#define INF 0x3f3f3f3f
#define DNF 0x7f
#define DBG printf("this is a input\n")
#define fi first
#define se second
#define mk(a, b) make_pair(a,b)
#define pb push_back
#define LF putchar('\n')
#define SP putchar(' ')
#define p_queue priority_queue
#define CLOSE ios::sync_with_stdio(0); cin.tie(0)
template<typename T>
void read(T &x) {x = 0;char ch = getchar();ll f = 1;while(!isdigit(ch)){if(ch == '-')f *= -1;ch = getchar();}while(isdigit(ch)){x = x * 10 + ch - 48; ch = getchar();}x *= f;}
template<typename T, typename... Args>
void read(T &first, Args& ... args) {read(first);read(args...);}
template<typename T>
void write(T arg) {T x = arg;if(x < 0) {putchar('-'); x =- x;}if(x > 9) {write(x / 10);}putchar(x % 10 + '0');}
template<typename T, typename ... Ts>
void write(T arg, Ts ... args) {write(arg);if(sizeof...(args) != 0) {putchar(' ');write(args ...);}}
using namespace std;
ll gcd(ll a, ll b) {
return b == 0 ? a : gcd(b, a % b);
}
ll lcm(ll a, ll b) {
return a / gcd(a, b) * b;
}
const int N = 2e5+10;
int n;
struct node
{
int t, w, next;
}edge[N << 1];
vector <int> ve;
int head[N], dfn[N], fdfn[N], siz[N], dep[N], cnt, times = 0;
int bz[N][25];
void add (int f, int t, int w)
{
edge[cnt].t = t;
edge[cnt].w = w;
edge[cnt].next = head[f];
head[f] = cnt ++;
}
void dfs (int u , int fa)
{
dfn[u] = ++ times;
fdfn[times] = u;
siz[u] = 1;
for (int i = head[u] ; i != -1 ; i = edge[i].next)
{
int v = edge[i].t;
if (v != fa)
{
bz[v][0] = u;
dep[v] = dep[u] + 1;
dfs (v , u);
siz[u] += siz[v];
}
}
}
void deal()
{
for (int i = 1 ; i <= 20 ; i ++)
for (int j = 1 ; j <= n ; j ++)
bz[j][i] = bz[bz[j][i-1]][i-1];
}
int val1[N << 2] , val2[N << 2], lz[N << 2], ans[N];
void push_up(int rt)
{
if (dep[val1[rt<<1]] > dep[val1[rt<<1|1]])
val1[rt] = val1[rt<<1];
else
val1[rt] = val1[rt<<1|1];
}
void pushdown(int rt)
{
if (lz[rt])
{
ve.pb(rt << 1);
ve.pb(rt << 1 | 1);
val1[rt << 1] = val1[rt << 1 | 1] = 0;
lz[rt << 1] = lz[rt << 1 | 1] = 1;
lz[rt] = 0;
}
}
void build (int rt, int l ,int r)
{
lz[rt] = 0;
if (l == r)
{
val1[rt] = val2[rt] = fdfn[l];
return ;
}
int mid = (l + r) >> 1;
build (rt << 1 , l , mid);
build (rt << 1 | 1 , mid + 1 , r);
push_up(rt);
val2[rt] = val1[rt];
}
int kfa (int u , int k)
{
for(int i = 20 ; i >= 0 ; i --)
if(k >= (1 << i))
k -= (1 << i) , u = bz[u][i];
return u ? u : 1;
}
void update(int rt, int L, int R, int l, int r)
{
ve.pb(rt);
if(l > R || r < L)
return;
if(l >= L && r <= R) {
val1[rt] = 0, lz[rt] = 1;
return;
}
pushdown(rt);
int mid = (l + r) >> 1;
update(rt << 1 , L, R, l, mid);
update(rt << 1 | 1, L, R, mid+1, r);
push_up(rt);
}
int get (int x)
{
ve.clear();
int ret = 0 , now , fnow;
while(true)
{
now = val1[1];
if (now == 0) break;
fnow = kfa (now, x);
update (1, dfn[fnow], dfn[fnow] + siz[fnow] - 1, 1 , n);
++ ret;
}
for (auto i : ve)
val1[i] = val2[i], lz[i] = 0;
return ret;
}
void init ()
{
times = cnt = 0;
for (int i = 1 ; i <= n ; i ++)
dep[i] = 0, fdfn[i] = 0 , siz[i] = 0, dfn[i] = 0, ans[i] = n + 1, head[i] = -1;
}
int main()
{
while (scanf("%d",&n) != EOF)
{
init();
for (int i = 2 ; i <= n ; i ++)
{
int u;
read (u);
add (i , u, 1);
add (u , i, 1);
}
dep[1] = 1;
dfs (1, 1);
deal ();
build (1, 1, n);
//get(i) :最近距离为i时需要get(i)个关键点
for (int i = n ; i >= 0 ; i --) {
ans[get(i)] = i;
//cout << get(i) << ' ' << i << endl;
}
for (int i = 2 ; i <= n ; i ++)
ans[i] = min (ans[i-1], ans[i]);
ll ret = 0;
for (int i = 1 ; i <= n ; i ++)
ret += ans[i];
write(ret), LF;
}
}
/*
5
1 1 3 3
*/