01Trie01Trie01Trie
- 01Trie与字典树几乎一样,只不过边的权值只有0或1
- 01Trie常用来解决异或问题
例题:
一.
- 题目链接:https://www.luogu.com.cn/problem/P4551
- 解题思路:首先意识到异或的前缀性质
假设:S3=A1xorA2xorA3S3 = A1xorA2xorA3S3=A1xorA2xorA3,S1=A1S1 = A1S1=A1, 那么 S2=S3xorS1S2 = S3xorS1S2=S3xorS1
那么我们将这条性质用在树上,我们随意指定一个根节点,然后求出树上任意节点到根节点的异或和,然后只需要枚举NNN个节点的的异或值,然后在剩余的N−1N-1N−1个节点中找出异或和最大的,然后记一下最大的AnsAnsAns就好了,为了加速寻找剩余的N−1N-1N−1个节点中找出异或和最大的节点,我们采用01Trie01Trie01Trie加速 - 代码:
//#define LOCAL
#include <bits/stdc++.h>
using namespace std;
#define ll long long
#define mem(a, b) memset(a,b,sizeof(a))
#define sz(a) (int)a.size()
#define INF 0x3f3f3f3f
#define DNF 0x7f
#define DBG printf("this is a input\n")
#define fi first
#define se second
#define mk(a, b) make_pair(a,b)
#define pb push_back
#define LF putchar('\n')
#define SP putchar(' ')
#define p_queue priority_queue
#define CLOSE ios::sync_with_stdio(0); cin.tie(0)
#define sz(a) (int)a.size()
#define pii pair <int,int>
template<typename T>
void read(T &x) {x = 0;char ch = getchar();ll f = 1;while(!isdigit(ch)){if(ch == '-')f *= -1;ch = getchar();}while(isdigit(ch)){x = x * 10 + ch - 48; ch = getchar();}x *= f;}
template<typename T, typename... Args>
void read(T &first, Args& ... args) {read(first);read(args...);}
template<typename T>
void write(T arg) {T x = arg;if(x < 0) {putchar('-'); x =- x;}if(x > 9) {write(x / 10);}putchar(x % 10 + '0');}
template<typename T, typename ... Ts>
void write(T arg, Ts ... args) {write(arg);if(sizeof...(args) != 0) {putchar(' ');write(args ...);}}
using namespace std;
ll gcd(ll a, ll b) {
return b == 0 ? a : gcd(b, a % b);
}
ll lcm(ll a, ll b) {
return a / gcd(a, b) * b;
}
const int N = 1000005;
int n, cnt = 1;
ll ans = 0;
vector <pair<int,ll>> edge[N];
ll dp[N];
int ch[N*32][2];
void dfs (int u, int fa)
{
for (auto it : edge[u])
{
int v = it.fi;
ll w = it.se;
if (v != fa)
{
dp[v] = (dp[u] ^ w);
dfs (v, u);
}
}
}
void insert (int val)
{
int now = 1;
for (int i = 30 ; i >= 0 ; i --)
{
int cur = (val >> i) & 1;
if (!ch[now][cur])
ch[now][cur] = ++ cnt;
now = ch[now][cur];
}
}
ll query (ll val)
{
ll sum = 0;
int now = 1;
for (int i = 30 ; i >= 0 ; i --)
{
int cur = (val >> i)&1;
if (ch[now][cur^1])
{
sum |= (1ll<<i);
now = ch[now][cur^1];
}
else
now = ch[now][cur];
}
return sum;
}
int main()
{
CLOSE;
cin >> n;
for (int i = 1 ; i < n ; i ++)
{
int u , v;
ll w;
cin >> u >> v >> w;
edge[u].pb({v,w});
edge[v].pb({u,w});
}
dfs (1, 0);
for (int i = 1 ; i <= n ; i ++)
insert (dp[i]);
for (int i = 1 ; i <= n ; i ++) {
ans = max(ans, dp[i]);
ans = max(ans, query(dp[i]));
}
cout << ans << endl;
}
二.
- 题目链接:https://codeforces.com/contest/1447/problem/E
- 解题思路:首先意识到题目的特性
给定的若干个数都只会出现一次,所以在构建出来的01Trie01Trie01Trie中叶子节点的数量和给定的NNN的数量是一样的,该题是与剩余的N−1N-1N−1个数中异或最小的那个数连边,我们通过思考,可以发现,与其相邻的就是异或最小的那个数

假设一颗01Trie01Trie01Trie长这样,那么显然蓝色的圆圈就是对应的连通块。
那么对于这4个数 [0,1,2,30,1,2,30,1,2,3], 需要删几个数才会变成一颗树呢,显然,因为此时连通块1中的编号为2的数和编号为1的数连在了一起,所以我们只需要删除其中一个,那么对应的父亲节点就只有一个儿子了那么这一位一定是1了,显然只能接到2号连通块了,其实在把树画大一点就会发现,其实就会发现每一个点的答案就是要么删掉左边的所有节点或者右边的所有节点(最后保留一个)
所以我们只需要往上回溯的过程中,求出一个节点下最多能有多少个数成为一颗树,最后用NNN减掉这个 值就是最少需要删掉的数的数量
- 代码:
//#define LOCAL
#include <bits/stdc++.h>
using namespace std;
#define ll long long
#define mem(a, b) memset(a,b,sizeof(a))
#define sz(a) (int)a.size()
#define INF 0x3f3f3f3f
#define DNF 0x7f
#define DBG printf("this is a input\n")
#define fi first
#define se second
#define mk(a, b) make_pair(a,b)
#define pb push_back
#define LF putchar('\n')
#define SP putchar(' ')
#define p_queue priority_queue
#define CLOSE ios::sync_with_stdio(0); cin.tie(0)
#define sz(a) (int)a.size()
#define pii pair <int,int>
template<typename T>
void read(T &x) {x = 0;char ch = getchar();ll f = 1;while(!isdigit(ch)){if(ch == '-')f *= -1;ch = getchar();}while(isdigit(ch)){x = x * 10 + ch - 48; ch = getchar();}x *= f;}
template<typename T, typename... Args>
void read(T &first, Args& ... args) {read(first);read(args...);}
template<typename T>
void write(T arg) {T x = arg;if(x < 0) {putchar('-'); x =- x;}if(x > 9) {write(x / 10);}putchar(x % 10 + '0');}
template<typename T, typename ... Ts>
void write(T arg, Ts ... args) {write(arg);if(sizeof...(args) != 0) {putchar(' ');write(args ...);}}
using namespace std;
ll gcd(ll a, ll b) {
return b == 0 ? a : gcd(b, a % b);
}
ll lcm(ll a, ll b) {
return a / gcd(a, b) * b;
}
const int N = 1000005;
int n, cnt = 1;
ll ans = 0;
ll a[N];
int ch[N*32][2];
void insert (ll val)
{
int now = 1;
for (int i = 30 ; i >= 0 ; i --)
{
int cur = (val >> i) & 1;
if (!ch[now][cur])
ch[now][cur] = ++ cnt;
now = ch[now][cur];
}
}
int dfs (int now)
{
if (now == 0) return 0;
if (!ch[now][0] && !ch[now][1]) return 1;
return max (dfs(ch[now][0]) + (ch[now][1]?1:0) , dfs (ch[now][1]) + (ch[now][0]?1:0));
}
int main()
{
CLOSE;
cin >> n;
for (int i = 1 ; i <= n ; i ++) cin >> a[i];
for (int i = 1 ; i <= n ; i ++) insert (a[i]);
cout << n - dfs (1) << endl;
}

635

被折叠的 条评论
为什么被折叠?



