一元线性回归公式推导
1.求解偏置b的公式推导思路:由最小二乘法导出损失函数E(ω,b)E( \omega, b )E(ω,b)—>证明损失函数E(ω,b)E( \omega, b )E(ω,b) 是关于www和bbb的凸函数—>对损失函数E(ω,b)E( \omega, b)E(ω,b)关于bbb求一阶偏导数—>令一阶偏导数等于000解出bbb
由最小二乘法导出损失函数E(ω,b)E( \omega, b)E(ω,b):
E(w,b)=∑i=1m(yi−f(xi))2=∑i=1m(yi−(ωxi+b))2=∑i=1m(yi−ωxi−b)2(p54.3.4)E_{(w,b)}=\sum^{m}_{i = 1}(y_i-f(x_i))^2=\sum^{m}_{i = 1}(y_i-(\omega x_i+b))^2=\sum^{m}_{i = 1}(y_i-\omega x_i-b)^2 \tag{$ p_{54}.3.4$} E(w,b)=i=1∑m(yi−f(xi))2=i=1∑m(yi−(ωxi+b))2=i=1∑m(yi−ωxi−b)2(p54.3.4)
证明损失函数E(ω,b)E(\omega, b)E(ω,b)是关于ω\omegaω和bbb的凸函数—— 求:A=fxx〞(x,y)A=f_{xx}^{ 〞}(x,y)A=fxx〞(x,y)
∂E(w,b)∂ω=∂∂ω[∑i=1m(yi−ωxi−b)2]=∑i=1m∂∂ω(yi−ωxi−b)2=∑i=1m2⋅(yi−ωxi−b)⋅(−xi)=2(ω∑i=1mxi2−∑i=1m(yi−b)xi) \frac{\partial E_{(w,b)}}{\partial \omega} =\frac{\partial }{\partial \omega} [\sum^{m}_{i = 1}(y_i-\omega x_i-b)^2] =\sum^{m}_{i = 1}\frac{\partial }{\partial \omega} (y_i-\omega x_i-b)^2 =\sum^{m}_{i = 1}2·(y_i-\omega x_i-b)·(-x_i) =2(\omega\sum^{m}_{i = 1}x_i ^2-\sum^{m}_{i = 1}(y_i-b)x_i) ∂ω∂E(w,b)=∂ω∂[i=1∑m(yi−ωxi−b)2]=i=1∑m∂ω∂(yi−ωxi−b)2=i=1∑m2⋅(yi−ωxi−b)⋅(−xi)=2(ωi=1∑mxi2−i=1∑m(yi−b)xi)上式即为即为(3.5)
A=fxx〞(x,y)=∂2E(ω,b)∂ω2=∂∂ω(∑i=1m∂E(w,b)∂ω)=∂∂ω[2(ω∑i=1mxi2−∑i=1m(yi−b)xi)]=∂∂ω[2ω∑i=1mxi2]=2∑i=1mxi2A=f_{xx}^{ 〞}(x,y)= \frac{\partial^2E_{(\omega,b)}}{\partial \omega^2} =\frac{\partial }{\partial \omega} (\sum^{m}_{i = 1}\frac{\partial E_{(w,b)}}{\partial \omega} ) =\frac{\partial }{\partial \omega}[2(\omega\sum^{m}_{i = 1}x_i ^2-\sum^{m}_{i = 1}(y_i-b)x_i)] =\frac{\partial }{\partial \omega}[2\omega\sum^{m}_{i = 1}x_i ^2] =2\sum^{m}_{i = 1}x_i ^2 A=fxx〞(x,y)=∂ω2∂2E(ω,b)=∂ω∂(i=1∑m∂ω∂E(w,b))=∂ω∂[2(ωi=1∑mxi2−i=1∑m(yi−b)xi)]=∂ω∂[2ωi=1∑mxi2]=2i=1∑mxi2
求:B=fxy〞(x,y)B=f_{xy}^{ 〞}(x,y)B=fxy〞(x,y)
B=fxy〞(x,y)=∂2E(ω,b)∂ω∂b=∂∂b(∂E(w,b)∂ω)=∂∂b[2(ω∑i=1mxi2−∑i=1m(yi−b)xi)]=∂∂b[−2∑i=1m(yi−b)xi)]=2∑i=1mxiB=f_{xy}^{ 〞}(x,y)= \frac{\partial^2E_{(\omega,b)}}{\partial \omega\partial b} =\frac{\partial }{\partial b} ( \frac{\partial E_{(w,b)}}{\partial \omega} ) =\frac{\partial }{\partial b} [2(\omega\sum^{m}_{i = 1}x_i ^2-\sum^{m}_{i = 1}(y_i-b)x_i)] =\frac{\partial }{\partial b}[-2\sum^{m}_{i = 1}(y_i-b)x_i)] =2\sum^{m}_{i = 1}x_iB=fxy〞(x,y)=∂ω∂b∂2E(ω,b)=∂b∂(∂ω∂E(w,b))=∂b∂[2(ωi=1∑mxi2−i=1∑m(yi−b)xi)]=∂b∂[−2i=1∑m(yi−b)xi)]=2i=1∑mxi
求:C=fyy〞(x,y)C=f_{yy}^{ 〞}(x,y)C=fyy〞(x,y)
∂E(w,b)∂b=∂∂b[∑i=1m(yi−ωxi−b)2]=∑i=1m∂∂b(yi−ωxi−b)2=∑i=1m2⋅(yi−ωxi−b)⋅(−1)=2(mb−∑i=1m(yi−ωxi)) \frac{\partial E_{(w,b)}}{\partial b} = \frac{\partial }{\partial b}[\sum^{m}_{i = 1} (y_i-\omega x_i-b)^2] =\sum^{m}_{i = 1}\frac{\partial }{\partial b} (y_i-\omega x_i-b)^2 =\sum^{m}_{i = 1}2·(y_i-\omega x_i-b)·(-1) =2(mb-\sum^{m}_{i = 1}(y_i-\omega x_i))∂b∂E(w,b)=∂b∂[i=1∑m(yi−ωxi−b)2]=i=1∑m∂b∂(yi−ωxi−b)2=i=1∑m2⋅(yi−ωxi−b)⋅(−1)=2(mb−i=1∑m(yi−ωxi))上式即为即为(3.6)