【CV】特征匹配FAST和MSER

特征匹配是计算机视觉领域的重要概念,涉及在图像中寻找关键点和描述符。FAST和MSER是两种常用的关键点检测算法。

FAST (Features from Accelerated Segment Test)

FAST算法是一种快速角点检测器。它基于像素强度比较,在一个圆圈内进行强度对比,以检测图像中的关键点。FAST的核心思想是通过比较圆圈内像素的强度差来检测角点。其速度快,适合实时应用。

在OpenCV中使用FAST

下面是如何在OpenCV中使用FAST算法检测关键点的示例代码:

import cv2
import matplotlib.pyplot as plt

# 读取灰度图像
image = cv2.imread('image.jpg', cv2.IMREAD_GRAYSCALE)

# 创建FAST检测器
fast = cv2.FastFeatureDetector_create()

# 检测关键点
keypoints = fast.detect(image, None)

# 在图像上绘制关键点
image_with_k
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Z_shsf

来包瓜子嘛,谢谢客官~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值