Descrition
Chiaki has 3n points p1,p2,…,p3n. It is guaranteed that no three points are collinear.Chiaki would like to construct n disjoint triangles where each vertex comes from the 3n points.
Input
There are multiple test cases. The first line of input contains an integer T, indicating the number of test cases. For each test case:
The first line contains an integer n (1≤n≤1000) -- the number of triangle to construct.
Each of the next 3n lines contains two integers xi and yi (−10^9≤xi,yi≤10^9).
It is guaranteed that the sum of all n does not exceed 10000.
Output
For each test case, output n lines contain three integers ai,bi,ci (1≤ai,bi,ci≤3n) each denoting the indices of points the i-th triangle use. If there are multiple solutions, you can output any of them.
Sample Input
1
1
1 2
2 3
3 5
Sample Output
1 2 3
解析
题目关键句是任意三点不共线,那么很简单,只要将坐标按横坐标从小到大排序,连续3个点组成一个三角形即可
代码
#include<stdio.h>
#include<algorithm>
using namespace std;
#define MAX 40005
struct point{
int xi;
int yi;
int index;
}p[MAX];
bool cmp(point a,point b)
{
if(a.xi==b.xi)
return a.yi<b.yi;
return a.xi<b.xi;
}
int main()
{
int T;
scanf("%d",&T);
while(T--)
{
int n;
scanf("%d",&n);
for(int i=0;i<3*n;i++)
{
scanf("%d%d",&p[i].xi,&p[i].yi);
p[i].index=i+1;
}
sort(p,p+3*n,cmp);
for(int i=0;i<n;i++)
{
printf("%d %d %d\n",p[i*3].index,p[i*3+1].index,p[i*3+2].index);
}
}
return 0;
}