CodeForces 189A-Cut Ribbon

本文探讨了如何使用动态规划解决切割特定长度丝带的问题,目标是在切割后得到尽可能多的长度为a、b或c的丝带片段。通过输入丝带原始长度n及可接受的片段长度a、b、c,算法输出最优的片段数量。实例展示了解决过程,并提供了AC代码作为参考。
A. Cut Ribbon
time limit per test
2 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

Polycarpus has a ribbon, its length is n. He wants to cut the ribbon in a way that fulfils the following two conditions:

  • After the cutting each ribbon piece should have length ab or c.
  • After the cutting the number of ribbon pieces should be maximum.

Help Polycarpus and find the number of ribbon pieces after the required cutting.

Input

The first line contains four space-separated integers nab and c (1 ≤ n, a, b, c ≤ 4000) — the length of the original ribbon and the acceptable lengths of the ribbon pieces after the cutting, correspondingly. The numbers ab and c can coincide.

Output

Print a single number — the maximum possible number of ribbon pieces. It is guaranteed that at least one correct ribbon cutting exists.

Sample test(s)
input
5 5 3 2
output
2
input
7 5 5 2
output
2

小结:果然,dp我不是一般的弱,真的真的还需要多多锻炼.....

以下是AC代码:

#include<stdio.h>
#include<string.h>
#include<stdlib.h>
#include<math.h>
#define mnum (~0U>>2)
int n,dp[4100];
void Init()
{
//printf("%d\n\n",-mnum);
for(int i=0;i<=n;i++)
dp[i]=-mnum;
}
int main()
{
int a,b,c;
while(~scanf("%d%d%d%d",&n,&a,&b,&c))
{
Init();
//printf("%d\n",dp[0]);
dp[0]=0;
for(int i=1;i<=n;i++)
{
if(i-a>=0)
dp[i]=dp[i-a]+1>dp[i]?dp[i-a]+1:dp[i];
if(i-b>=0)
dp[i]=dp[i-b]+1>dp[i]?dp[i-b]+1:dp[i];
if(i-c>=0)
dp[i]=dp[i-c]+1>dp[i]?dp[i-c]+1:dp[i];
}
printf("%d\n",dp[n]);
}
return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值