前言
BST(Binary Search Tree)二叉查找树也太简单了吧,今天做的这个有点简单哈哈哈哈。
我的思路
迭代
迭代就是我的主要工作在于更新变量上了,如果我想要找的值比根节点小,我就用根节点的左孩子去替代当前的值
。用while循环去控制不为空的条件。
node* search_BST(node* root,char str) {
while (root != nullptr) {
if (root->info == str) {
return root;
}
else if(root->info <str) {
root = root->right;
}
else if (root->info > str) {
root = root->left;
}
}
cout << "此BST中没有这个元素!" << endl;
return NULL;
}
递归
递归就是我直接调用自己去找,把我的子树当参数去传递给这个函数。我还是喜欢迭代一点。
node* search_BST_recursion(node* root, char str) {
if (root == nullptr) {
cout << "此BST中没有这个元素!" << endl;
return NULL;
}
else if (root->info == str) {
return root;
}
else if(root->info < str) {
search_BST_recursion(root->right, str);
}
else {
search_BST_recursion(root->left, str);
}
}
};
我还考虑了一下深拷贝和浅拷贝的问题,一般来说,我们用指针去返回一个对象那基本就是深拷贝了呵呵。
结果
我的代码
#include <iostream>
#include<algorithm>
#include<cmath>
#include <queue>
#include<climits>
using namespace std;
struct node {
char info;
node* left;
node* right;
node(char data) :info(data), left(nullptr), right(nullptr) {
};
node() :info(NULL), left(nullptr), right(nullptr) {
};
};
class binaryTree {
private:
node* root;
public:
binaryTree() {
root = new node(NULL);
}
//得到树的根结点
node* getRoot() {
return root;
}
//得到树的根结点
void setRoot(node* newRoot) {
root=newRoot;
}
//以递归的方式构建一棵树
void createTree(node*& t,string data,int &i) {
char str=data[i];
/*cin >> str;*/
if (str == '#') {
t = NULL;
}
else {
t = new node;//为t开辟空间
t->info = str;
createTree(t->left,data,++i);
createTree(t->right,data,++i);
}
}
//树的深度
int depth(node* root) {
if (root == nullptr) {
return 0;
}
int left = depth(root->left);
int right = depth(root->right);
return max(left, right) + 1;
}
//打印一棵树满二叉树,只能打印满二叉树,节点数目最好不要超过10
void print(node*& root) {
//存放打印的二叉树
char str[10][100] = {};
queue<node*> q;
int h = depth(root);
q.push(root);
int index = 0;
while (!q.empty()) {
int size = q.size();
//存放每一层的节点
vector<char> list;
for (int i = 0; i < size; i++) {
node* temp = q.front();
q.pop();
list.push_back(temp->info);
//cout << temp->info;
if (temp->left != nullptr) {
q.push(temp->left);
}
if (temp->right != nullptr) {
q.push(temp->right);
}
}
bool flag = true;
int j = 0;
//打印前面部分空白
while (j <= 2 * h - 1 - index) {
str[index][j] = ' ';
j++;
}
//保持第一行居中
if (index == 0) {
for (int m = 0; m < h - 2; m++) {
str[index][j++] = ' ';
}
}
for (int k = 0; k < list.size(); k++) {
//如果是一层最后一个节点
if (k == list.size() - 1) {
str[index][j++] = list[k];
}
else {
//相邻左右子节点
if (k % 2 == 0) {
str[index][j++] = list[k];
for (int l = 0; l < 3 + 2 * (h - index / 2 - 1); l++) {
str[index][j++] = ' ';
}
}
else {
str[index][j++] = list[k];
str[index][j++] = ' ';
}
}
}
index += 2;
//cout << endl;
}
for (int i = 0; i < 10; i++) {
if (i % 2 == 1) {
for (int j = 0; j < 100; j++) {
str[i][j] = ' ';
}
}
}
for (int i = 0; i < 10; i++) {
if (i % 2 == 0) {
for (int j = 0; j < 100; j++) {
if (str[i][j] - '0' >= 0 && str[i][j] - '0' <= 9 && i < 2 * h - 2) {
str[i + 1][j - 1] = '/';
str[i + 1][j + 1] = '\\';
}
}
}
}
for (int i = 0; i < 10; i++) {
for (int j = 0; j < 100; j++) {
cout << str[i][j];
}
cout << endl;
}
}
void DeepFirstSearch(node* root) {
if (root == NULL) {
return;
}
else {
cout << root->info << ' ';
DeepFirstSearch(root->left);
DeepFirstSearch(root->right);
}
}
void BreadthFirstSearch(node* root) {
queue<node> myTree;
if (root != nullptr) {
myTree.push(*root);
}
while (!myTree.empty()) {
cout << myTree.front().info << ' ';
if (myTree.front().left != nullptr) {
myTree.push(*(myTree.front().left));
}
if (myTree.front().right != nullptr) {
myTree.push(*(myTree.front().right));
}
myTree.pop();
}
}
//用于BFS递归的主函数
void BFS_Recursion(node* root, int level, vector<vector<char>>& res) {
if (root == nullptr) {
return;
}
if (res.size() < level) {
res.push_back(vector<char>());
}
res[level - 1].push_back(root->info);
BFS_Recursion(root->left, level + 1, res);
BFS_Recursion(root->right, level + 1, res);
}
void BreadthFirstSearch_recursion(node* root) {
vector<vector<char>> res;
BFS_Recursion(root, 1, res);
for (int i = 0; i < res.size(); i++) {
for (int j = 0; j < res[i].size(); j++) {
cout << res[i][j] << " ";
}
}
}
//验证是否为二叉搜索树
void isBST(node* root) {
//先创建一个数组
vector<char> midOrderArr;
midOrder(root, midOrderArr);
//输出看一下我的数组里面存的是不是中序遍历的值
for (int i = 0; i < midOrderArr.size(); i++) {
cout << midOrderArr[i] << ' ';
}
cout << endl;
for (int i = 0; i < midOrderArr.size() - 1; i++) {
if (midOrderArr[i] >= midOrderArr[i + 1]) {
cout << "该二叉树 不是一颗二叉搜索树!" << endl;
return;
}
}
cout << "该二叉树 是一颗二叉搜索树!" << endl;
}
//二叉树的中序遍历
void midOrder(node* root, vector<char>& Arr) {
if (root == nullptr) {
return;
}
midOrder(root->left, Arr);
Arr.push_back(root->info);
midOrder(root->right, Arr);
}
bool isBST_Recursion(node* root, long long min, long long max) {
if (root == nullptr) {
return true;
}
if (root->info <= min || root->info >= max) {
//cout << "该二叉树不是一个二叉搜索树";
return false;
}
return isBST_Recursion(root->left, min, root->info) && isBST_Recursion(root->right, root->info, max);
}
node* search_BST(node* root,char str) {
while (root != nullptr) {
if (root->info == str) {
return root;
}
else if(root->info <str) {
root = root->right;
}
else if (root->info > str) {
root = root->left;
}
}
cout << "此BST中没有这个元素!" << endl;
return NULL;
}
node* search_BST_recursion(node* root, char str) {
if (root == nullptr) {
cout << "此BST中没有这个元素!" << endl;
return NULL;
}
else if (root->info == str) {
return root;
}
else if(root->info < str) {
search_BST_recursion(root->right, str);
}
else {
search_BST_recursion(root->left, str);
}
}
};
int main() {
binaryTree T;
node* root = T.getRoot();
string data = "421##3##65##7##";
string data2 = "1248##9##5##36##7##";
char str = '2';
int i = 0;
T.createTree(root,data,i);
cout << "树的深度:" << T.depth(root) << endl;
T.print(root);
cout << "===========查找====================" << endl;
binaryTree resTree;
if (T.search_BST(root, str)) {
resTree.setRoot(T.search_BST(root, str));
node* resTreeRoot = resTree.getRoot();
resTree.print(resTreeRoot);
}
cout << "===========查找==递归==================" << endl;
binaryTree resTree2;
if (T.search_BST_recursion(root, str)) {
resTree2.setRoot(T.search_BST_recursion(root, str));
node* resTreeRoot2 = resTree2.getRoot();
resTree.print(resTreeRoot2);
}
return 0;
}