#include <linux/init.h>
#include <linux/module.h>
#include <linux/cdev.h>
#include <linux/fs.h>
#include <linux/device.h>
#include <linux/slab.h>
#include <linux/uaccess.h>
#include <linux/poll.h>
#define CNAME "mycdev"
struct cdev cdev;
int major = 0;
int minor = 0;
const int count = 3;
struct class *cls;
struct device *dev;
char kbuf[128] = {0};
//一:定义一个fasync_struct结构体指针变量
struct fasync_struct *fapp;
int mycdev_open(struct inode *inode, struct file *file){
printk("%s:%s(%d)\n",__FILE__,__func__,__LINE__);
return 0;
}
ssize_t mycdev_read(struct file *file, char __user *ubuf, size_t size, loff_t *offs){
int ret = 0;
printk("%s:%s(%d)\n",__FILE__,__func__,__LINE__);
//从硬件中读取数据
//将数据copy到用户空间
//校验大小
if(size > sizeof(kbuf)){
size = sizeof(kbuf);
}
//数据传输
ret = copy_to_user(ubuf, kbuf, size);
if(ret){
printk("copy_to_user error\n");
return -EIO;
}
return size;
}
ssize_t mycdev_write(struct file *file, const char __user *ubuf, size_t size, loff_t *offs){
int ret;
printk("%s:%s(%d)\n",__FILE__,__func__,__LINE__);
//校验大小
if(size > sizeof(kbuf)) size = sizeof(kbuf);
//数据传输
ret = copy_from_user(kbuf,ubuf,size);
if(ret){
printk("copy_from_user error\n");
return -EIO;
}
//三:发信号
//extern void kill_fasync(struct fasync_struct **, int 信号号, int 信号类型);
kill_fasync(&fapp, SIGIO, POLL_IN);
return size;
}
int mycdev_fasync(int fd, struct file *file, int on){
//几乎所有字符设备驱动程序都使用Fasync_helper()来设置fasync队列,
//对于常规文件,则使用文件租约代码。
//错误时返回负,如果没有做任何更改则返回0,如果添加/删除条目则返回正。
return fasync_helper(fd, file, on, &fapp);
}
int mycdev_close(struct inode*inode, struct file*file){
printk("%s:%s(%d)\n",__FILE__,__func__,__LINE__);
return 0;
}
const struct file_operations fops = {
.open = mycdev_open,
.read = mycdev_read,
.write = mycdev_write,
//二:增添fasync操作,异步通知底层函数,完成下一行的工作
//应用层注册的signal(SIGIO,信号处理函数) 发信号前的fasync_struct结构体的初始化工作
//应用层将本程序的进程号告诉内核 fcntl(fd, F_SETOWN, getpid());
//应用层通过 fcntl 调用到底层fasync 操作如下:
// unsigned int flags = fcntl(fd, F_GETFL);
// fcntl(fd, F_SETFL, flags|FASYNC);
//即改变fasync标记的时候,驱动中的fasync函数会被调用
.fasync = mycdev_fasync,
.release = mycdev_close,
};
static int __init mycdev_init(void){
int ret = 0;
dev_t devno = 0;
int i = 0;
//1.初始化cdev
cdev_init(&cdev,&fops);
cdev.owner = THIS_MODULE;
//2.申请设备号
if(major > 0){
ret = register_chrdev_region(MKDEV(major,minor),count,CNAME);
if(ret){
printk("register_chrdev_region error\n");
goto ERR1;
}
}else if(major == 0){
ret = alloc_chrdev_region(&devno,minor,count,CNAME);
if(ret){
printk("alloc_chrdev_region error\n");
goto ERR1;
}
major = MAJOR(devno);
minor = MINOR(devno);
}
//3.注册
ret = cdev_add(&cdev,MKDEV(major,minor),count);
if(ret){
printk("cdev_add error\n");
goto ERR2;
}
//4.创建设备节点
cls = class_create(THIS_MODULE,CNAME);
if(IS_ERR(cls)){
printk("class_creat error\n");
goto ERR3;
}
for(i = 0; i < count; i++){
dev = device_create(cls, NULL, MKDEV(major,i), NULL, "mycdev%d",i);
if(IS_ERR(dev)){
printk("device_creat error\n");
goto ERR4;
}
}
return 0;
ERR4:
for(--i; i >= 0; i--){
device_destroy(cls, MKDEV(major, i));
}
class_destroy(cls);
ERR3:
cdev_del(&cdev);
ERR2:
unregister_chrdev_region(MKDEV(major,minor),count);
ERR1:
return ret;
}
static void __exit mycdev_exit(void){
int i = 0;
for(i = 0; i < count; i++){
device_destroy(cls, MKDEV(major, i));
}
class_destroy(cls);
cdev_del(&cdev);
unregister_chrdev_region(MKDEV(major, minor), count);
}
module_init(mycdev_init);
module_exit(mycdev_exit);
MODULE_LICENSE("GPL");
test.c
#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <signal.h>
int fd;
char buf[128] = { 0 };
void signal_handle(int signo)
{
if (signo == SIGIO) {
memset(buf,0,sizeof(buf));
read(fd, buf, sizeof(buf));
printf("buf = %s\n",buf);
}
}
int main(int argc, const char* argv[])
{
if ((fd = open("/dev/mycdev0", O_RDWR)) == -1) {
perror("open mycdev error");
exit(-1);
}
if (signal(SIGIO, signal_handle) == SIG_ERR)
perror("signal error");
exit(-1);
fcntl(fd, F_SETFL, fcntl(fd, F_GETFL) | FASYNC);
fcntl(fd, F_SETOWN, getpid());
while (1) {
sleep(1);
}
close(fd);
return 0;
}
这篇文章展示了如何在Linux内核中编写一个简单的字符设备驱动,包括初始化cdev结构、注册设备号、实现open、read、write等方法。特别是,它详细解释了fasync机制,用于在设备数据可用时向应用程序发送SIGIO信号,实现了异步通知功能。
1540

被折叠的 条评论
为什么被折叠?



