1009 Product of Polynomials (25分)(一个字短!)

本文介绍了一种计算两个多项式乘积的方法,通过使用double数组保存系数及其乘积后的系数,实现了多项式相乘的算法。输入包含两个多项式的系数和指数,输出为乘积多项式的系数和指数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1009 Product of Polynomials (25分)

题目

This time, you are supposed to find A×BA\times BA×B where AAA and BBB are two polynomials.
Input Specification:
Each input file contains one test case. Each case occupies 2 lines, and each line contains the information of a polynomial: K N1 aN1 N2 aN2 … NK aNK where K is the number of nonzero terms in the polynomial, N​i​​ and aN​i (i=1,2,⋯,K) are the exponents and coefficients, respectively. It is given that 1≤K≤10, 0≤Nk<⋯<N2<N1≤10000.
Output Specification:
For each test case you should output the product of AAA and BBB in one line, with the same format as the input. Notice that there must be NO extra space at the end of each line. Please be accurate up to 1 decimal place.

Sample Input:
2 1 2.4 0 3.2
2 2 1.5 1 0.5

Sample Output:
3 3 3.6 2 6.0 1 1.6

题意

求两个多项式的乘积

分析

用double数组保存系数以及相乘之后的系数

代码

#include<iostream>
#define maxn 1001
using namespace std;
int k1,k2;
double co1[maxn],co2[maxn],co[2*maxn];
int t1,t2,t;
int main(){
 	fill(co1,co1+maxn,0.0);
 	fill(co2,co2+maxn,0.0);
 	fill(co,co+2*maxn,0.0);
 	t1=t2=t=-1;
 	int e;
 	scanf("%d",&k1);
 	for(int j=0;j<k1;j++){
  		scanf("%d",&e);
  		if(t1<e)     
  		t1=e;
  		scanf("%lf",&co1[e]);
 	}
 	scanf("%d",&k2);
 	for(int j=0;j<k2;j++){
  		scanf("%d",&e);
  		if(t2<e)     
   			t2=e;
  		scanf("%lf",&co2[e]);
 	}
 	t=t1+t2;
 	for(int i=0;i<=t;i++){
  		for(int j=0;j<=i;j++){
   			if(j<=t1&&i-j<=t2)
   			co[i]+=co1[j]*co2[i-j];
  		}
 	}
 	int cnt=0;
 	for(int i=0;i<=t;i++){
  		if(co[i]!=0){
  			cnt++;
   			t1=i;
  		}
 	}
 	printf("%d",cnt);
 	for(int i=t1;i>=0;i--){
  		if(co[i]!=0)
  		printf(" %d %.1lf",i,co[i]);
 	}
 	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值