第十六周--验证算法(基数排序)

本文介绍了一种使用链表实现基数排序的方法,并通过具体代码展示了排序过程。利用链队进行分配与收集操作,实现了对数字序列的有效排序。
/*
 *Copyright (c) 2015 烟台大学计算机与控制工程学院
 *All right reserved.
 *标题:数据结构实践——验证算法 基数排序
 *作者:杨珺
 *date:2015年12月14日
 *版本:V1.0.1
 *操作系统:XP
 *运行环境:VC6.0
 *问题描述:用序列{57, 40, 38, 11, 13, 34, 48, 75, 6, 19, 9, 7}作为测试数据,
 运行并本周视频中所讲过的算法对应 程序,观察运行结果并深刻领会算法的思路和实现方法
*/

#include <stdio.h>
#include <malloc.h>
#include <string.h>
#define MAXE 20         //线性表中最多元素个数
#define MAXR 10         //基数的最大取值
#define MAXD 8          //关键字位数的最大取值
typedef struct node
{
    char data[MAXD];    //记录的关键字定义的字符串
    struct node *next;
} RecType;
void CreaLink(RecType *&p,char *a[],int n);
void DispLink(RecType *p);
void RadixSort(RecType *&p,int r,int d) //实现基数排序:*p为待排序序列链表指针,r为基数,d为关键字位数
{
    RecType *head[MAXR],*tail[MAXR],*t; //定义各链队的首尾指针
    int i,j,k;
    for (i=0; i<=d-1; i++)                  //从低位到高位循环
    {
        for (j=0; j<r; j++)                 //初始化各链队首、尾指针
            head[j]=tail[j]=NULL;
        while (p!=NULL)                 //对于原链表中每个结点循环
        {
            k=p->data[i]-'0';           //找第k个链队
            if (head[k]==NULL)          //进行分配
            {
                head[k]=p;
                tail[k]=p;
            }
            else
            {
                tail[k]->next=p;
                tail[k]=p;
            }
            p=p->next;                  //取下一个待排序的元素
        }
        p=NULL;                         //重新用p来收集所有结点
        for (j=0; j<r; j++)             //对于每一个链队循环
            if (head[j]!=NULL)          //进行收集
            {
                if (p==NULL)
                {
                    p=head[j];
                    t=tail[j];
                }
                else
                {
                    t->next=head[j];
                    t=tail[j];
                }
            }
        t->next=NULL;                   //最后一个结点的next域置NULL
        //以下的显示并非必要
        printf("  按%d位排序\t",i);
        DispLink(p);
    }
}
void CreateLink(RecType *&p,char a[MAXE][MAXD],int n)   //采用后插法产生链表
{
    int i;
    RecType *s,*t;
    for (i=0; i<n; i++)
    {
        s=(RecType *)malloc(sizeof(RecType));
        strcpy(s->data,a[i]);
        if (i==0)
        {
            p=s;
            t=s;
        }
        else
        {
            t->next=s;
            t=s;
        }
    }
    t->next=NULL;
}
void DispLink(RecType *p)   //输出链表
{
    while (p!=NULL)
    {
        printf("%c%c ",p->data[1],p->data[0]);
        p=p->next;
    }
    printf("\n");
}
int main()
{
    int n=10,r=10,d=2;
    int i,j,k;
    RecType *p;
    char a[MAXE][MAXD];
    int b[]= {57, 40, 38, 11, 13, 34, 48, 75, 6, 19, 9, 7};
    for (i=0; i<n; i++)     //将b[i]转换成字符串
    {
        k=b[i];
        for (j=0; j<d; j++) //例如b[0]=75,转换后a[0][0]='7',a[0][1]='5'
        {
            a[i][j]=k%10+'0';
            k=k/10;
        }
        a[i][j]='\0';
    }
    CreateLink(p,a,n);
    printf("\n");
    printf("  初始关键字\t");        //输出初始关键字序列
    DispLink(p);
    RadixSort(p,10,2);
    printf("  最终结果\t");         //输出最终结果
    DispLink(p);
    printf("\n");
    return 0;
}

运行结果:
下载方式:https://pan.quark.cn/s/a4b39357ea24 布线问题(分支限界算法)是计算机科学和电子工程领域中一个广为人知的议题,它主要探讨如何在印刷电路板上定位两个节点间最短的连接路径。 在这一议题中,电路板被构建为一个包含 n×m 个方格的矩阵,每个方格能够被界定为可通行或不可通行,其核心任务是定位从初始点到最终点的最短路径。 分支限界算法是处理布线问题的一种常用策略。 该算法与回溯法有相似之处,但存在差异,分支限界法仅需获取满足约束条件的一个最优路径,并按照广度优先或最小成本优先的原则来探索解空间树。 树 T 被构建为子集树或排列树,在探索过程中,每个节点仅被赋予一次成为扩展节点的机会,且会一次性生成其全部子节点。 针对布线问题的解决,队列式分支限界法可以被采用。 从起始位置 a 出发,将其设定为首个扩展节点,并将与该扩展节点相邻且可通行的方格加入至活跃节点队列中,将这些方格标记为 1,即从起始方格 a 到这些方格的距离为 1。 随后,从活跃节点队列中提取队首节点作为下一个扩展节点,并将与当前扩展节点相邻且未标记的方格标记为 2,随后将这些方格存入活跃节点队列。 这一过程将持续进行,直至算法探测到目标方格 b 或活跃节点队列为空。 在实现上述算法时,必须定义一个类 Position 来表征电路板上方格的位置,其成员 row 和 col 分别指示方格所在的行和列。 在方格位置上,布线能够沿右、下、左、上四个方向展开。 这四个方向的移动分别被记为 0、1、2、3。 下述表格中,offset[i].row 和 offset[i].col(i=0,1,2,3)分别提供了沿这四个方向前进 1 步相对于当前方格的相对位移。 在 Java 编程语言中,可以使用二维数组...
源码来自:https://pan.quark.cn/s/a4b39357ea24 在VC++开发过程中,对话框(CDialog)作为典型的用户界面组件,承担着与用户进行信息交互的重要角色。 在VS2008SP1的开发环境中,常常需要满足为对话框配置个性化背景图片的需求,以此来优化用户的操作体验。 本案例将系统性地阐述在CDialog框架下如何达成这一功能。 首先,需要在资源设计工具中构建一个新的对话框资源。 具体操作是在Visual Studio平台中,进入资源视图(Resource View)界面,定位到对话框(Dialog)分支,通过右键选择“插入对话框”(Insert Dialog)选项。 完成对话框内控件的布局设计后,对对话框资源进行保存。 随后,将着手进行背景图片的载入工作。 通常有两种主要的技术路径:1. **运用位图控件(CStatic)**:在对话框界面中嵌入一个CStatic控件,并将其属性设置为BST_OWNERDRAW,从而具备自主控制绘制过程的权限。 在对话框的类定义中,需要重写OnPaint()函数,负责调用图片资源并借助CDC对象将其渲染到对话框表面。 此外,必须合理处理WM_CTLCOLORSTATIC消息,确保背景图片的展示不会受到其他界面元素的干扰。 ```cppvoid CMyDialog::OnPaint(){ CPaintDC dc(this); // 生成设备上下文对象 CBitmap bitmap; bitmap.LoadBitmap(IDC_BITMAP_BACKGROUND); // 获取背景图片资源 CDC memDC; memDC.CreateCompatibleDC(&dc); CBitmap* pOldBitmap = m...
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值