第十六周--验证算法(归并排序)

本文通过使用特定序列作为测试数据,演示并解释了归并排序算法的实现和工作原理,提供了完整的代码示例及运行结果,旨在帮助读者深入理解排序算法的核心思路。
/*
 *Copyright (c) 2015 烟台大学计算机与控制工程学院
 *All right reserved.
 *标题:数据结构实践——验证算法 归并排序 
 *作者:杨珺
 *date:2015年12月14日
 *版本:V1.0.1
 *操作系统:XP
 *运行环境:VC6.0
 *问题描述:用序列{57, 40, 38, 11, 13, 34, 48, 75, 6, 19, 9, 7}作为测试数据,
 运行并本周视频中所讲过的算法对应 程序,观察运行结果并深刻领会算法的思路和实现方法
*/

#include <stdio.h>
#include <malloc.h>
#define MaxSize 20
typedef int KeyType;    //定义关键字类型
typedef char InfoType[10];
typedef struct          //记录类型
{
    KeyType key;        //关键字项
    InfoType data;      //其他数据项,类型为InfoType
} RecType;              //排序的记录类型定义

void Merge(RecType R[],int low,int mid,int high)
{
    RecType *R1;
    int i=low,j=mid+1,k=0; //k是R1的下标,i、j分别为第1、2段的下标
    R1=(RecType *)malloc((high-low+1)*sizeof(RecType));  //动态分配空间
    while (i<=mid && j<=high)       //在第1段和第2段均未扫描完时循环
        if (R[i].key<=R[j].key)     //将第1段中的记录放入R1中
        {
            R1[k]=R[i];
            i++;
            k++;
        }
        else                            //将第2段中的记录放入R1中
        {
            R1[k]=R[j];
            j++;
            k++;
        }
    while (i<=mid)                      //将第1段余下部分复制到R1
    {
        R1[k]=R[i];
        i++;
        k++;
    }
    while (j<=high)                 //将第2段余下部分复制到R1
    {
        R1[k]=R[j];
        j++;
        k++;
    }
    for (k=0,i=low; i<=high; k++,i++) //将R1复制回R中
        R[i]=R1[k];
}

void MergePass(RecType R[],int length,int n)    //对整个数序进行一趟归并
{
    int i;
    for (i=0; i+2*length-1<n; i=i+2*length)     //归并length长的两相邻子表
        Merge(R,i,i+length-1,i+2*length-1);
    if (i+length-1<n)                       //余下两个子表,后者长度小于length
        Merge(R,i,i+length-1,n-1);          //归并这两个子表
}
void MergeSort(RecType R[],int n)           //自底向上的二路归并算法
{
    int length;
    for (length=1; length<n; length=2*length) //进行log2n趟归并
        MergePass(R,length,n);
}
int main()
{
    int i,n=10;
    RecType R[MaxSize];
    KeyType a[]= {57, 40, 38, 11, 13, 34, 48, 75, 6, 19, 9, 7};
    for (i=0; i<n; i++)
        R[i].key=a[i];
    printf("排序前:");
    for (i=0; i<n; i++)
        printf("%d ",R[i].key);
    printf("\n");
    MergeSort(R,n);
    printf("排序后:");
    for (i=0; i<n; i++)
        printf("%d ",R[i].key);
    printf("\n");
    return 0;
}


运行结果:

下载方式:https://pan.quark.cn/s/a4b39357ea24 布线问题(分支限界算法)是计算机科学和电子工程领域中一个广为人知的议题,它主要探讨如何在印刷电路板上定位两个节点间最短的连接路径。 在这一议题中,电路板被构建为一个包含 n×m 个方格的矩阵,每个方格能够被界定为可通行或不可通行,其核心任务是定位从初始点到最终点的最短路径。 分支限界算法是处理布线问题的一种常用策略。 该算法与回溯法有相似之处,但存在差异,分支限界法仅需获取满足约束条件的一个最优路径,并按照广度优先或最小成本优先的原则来探索解空间树。 树 T 被构建为子集树或排列树,在探索过程中,每个节点仅被赋予一次成为扩展节点的机会,且会一次性生成其全部子节点。 针对布线问题的解决,队列式分支限界法可以被采用。 从起始位置 a 出发,将其设定为首个扩展节点,并将与该扩展节点相邻且可通行的方格加入至活跃节点队列中,将这些方格标记为 1,即从起始方格 a 到这些方格的距离为 1。 随后,从活跃节点队列中提取队首节点作为下一个扩展节点,并将与当前扩展节点相邻且未标记的方格标记为 2,随后将这些方格存入活跃节点队列。 这一过程将持续进行,直至算法探测到目标方格 b 或活跃节点队列为空。 在实现上述算法时,必须定义一个类 Position 来表征电路板上方格的位置,其成员 row 和 col 分别指示方格所在的行和列。 在方格位置上,布线能够沿右、下、左、上四个方向展开。 这四个方向的移动分别被记为 0、1、2、3。 下述表格中,offset[i].row 和 offset[i].col(i=0,1,2,3)分别提供了沿这四个方向前进 1 步相对于当前方格的相对位移。 在 Java 编程语言中,可以使用二维数组...
源码来自:https://pan.quark.cn/s/a4b39357ea24 在VC++开发过程中,对话框(CDialog)作为典型的用户界面组件,承担着与用户进行信息交互的重要角色。 在VS2008SP1的开发环境中,常常需要满足为对话框配置个性化背景图片的需求,以此来优化用户的操作体验。 本案例将系统性地阐述在CDialog框架下如何达成这一功能。 首先,需要在资源设计工具中构建一个新的对话框资源。 具体操作是在Visual Studio平台中,进入资源视图(Resource View)界面,定位到对话框(Dialog)分支,通过右键选择“插入对话框”(Insert Dialog)选项。 完成对话框内控件的布局设计后,对对话框资源进行保存。 随后,将着手进行背景图片的载入工作。 通常有两种主要的技术路径:1. **运用位图控件(CStatic)**:在对话框界面中嵌入一个CStatic控件,并将其属性设置为BST_OWNERDRAW,从而具备自主控制绘制过程的权限。 在对话框的类定义中,需要重写OnPaint()函数,负责调用图片资源并借助CDC对象将其渲染到对话框表面。 此外,必须合理处理WM_CTLCOLORSTATIC消息,确保背景图片的展示不会受到其他界面元素的干扰。 ```cppvoid CMyDialog::OnPaint(){ CPaintDC dc(this); // 生成设备上下文对象 CBitmap bitmap; bitmap.LoadBitmap(IDC_BITMAP_BACKGROUND); // 获取背景图片资源 CDC memDC; memDC.CreateCompatibleDC(&dc); CBitmap* pOldBitmap = m...
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值