第四周--单链表应用(两个单链表连接)

本文介绍了一种将两个单链表连接的算法实现,通过找到第一个链表的尾节点并将其与第二个链表的头节点相连,最后释放第二个链表的头节点。该算法的时间复杂度为O(m),其中m为第一个链表的长度。
/*  
 *Copyright (c) 2015 烟台大学计算机与控制工程学院  
 *All right reserved.  
 *标题:数据结构实践——单链表的应用 
 *作者:杨珺  
 *date:2015年9月22日  
 *版本:V1.0.1  
 *操作系统:XP  
 *运行环境:VC6.0  
 *问题描述:已知L1和L2分别指向两个单链表的头结点,且已知其长度分别为m、n,
           请设计算法将L2连接到L1的后面。
		   实现这个算法,完成测试,并分析这个算法的复杂度。
*/   


头文件代码:

#ifndef LINKLIST_H_INCLUDED
#define LINKLIST_H_INCLUDED

typedef int ElemType;
typedef struct LNode        //定义单链表结点类型
{
    ElemType data;
    struct LNode *next;     //指向后继结点
}LinkList;
void CreateListF(LinkList *&L,ElemType a[],int n);//头插法建立单链表
void CreateListR(LinkList *&L,ElemType a[],int n);//尾插法建立单链表
void InitList(LinkList *&L);  //初始化线性表
void DestroyList(LinkList *&L);  //销毁线性表
bool ListEmpty(LinkList *L);  //判断线性表是否为空
int ListLength(LinkList *L);  //求线性表长度
void DispList(LinkList *L);  //输出线性表
bool GetElem(LinkList *L,int i,ElemType &e);  //求线性表某个数据元素值
int LocateElem(LinkList *L,ElemType e);  //按元素值查找
bool ListInsert(LinkList *&L,int i,ElemType e);  //插入数据元素
bool ListDelete(LinkList *&L,int i,ElemType &e);  //删除数据元素
void Link(LinkList *&L1, LinkList *&L2);
#endif // LINKLIST_H_INCLUDED


源文件代码:

#include <stdio.h>
#include <malloc.h>
#include "linklist.h"


void CreateListF(LinkList *&L,ElemType a[],int n)//头插法建立单链表
{
    LinkList *s;
    int i;
    L=(LinkList *)malloc(sizeof(LinkList));     //创建头结点
    L->next=NULL;
    for (i=0; i<n; i++)
    {
        s=(LinkList *)malloc(sizeof(LinkList));//创建新结点
        s->data=a[i];
        s->next=L->next;            //将*s插在原开始结点之前,头结点之后
        L->next=s;
    }
}

void CreateListR(LinkList *&L,ElemType a[],int n)//尾插法建立单链表
{
    LinkList *s,*r;
    int i;
    L=(LinkList *)malloc(sizeof(LinkList));     //创建头结点
    L->next=NULL;
    r=L;                    //r始终指向终端结点,开始时指向头结点
    for (i=0; i<n; i++)
    {
        s=(LinkList *)malloc(sizeof(LinkList));//创建新结点
        s->data=a[i];
        r->next=s;          //将*s插入*r之后
        r=s;
    }
    r->next=NULL;           //终端结点next域置为NULL
}

void InitList(LinkList *&L)
{
    L=(LinkList *)malloc(sizeof(LinkList));     //创建头结点
    L->next=NULL;
}
void DestroyList(LinkList *&L)
{
    LinkList *p=L,*q=p->next;
    while (q!=NULL)
    {
        free(p);
        p=q;
        q=p->next;
    }
    free(p);    //此时q为NULL,p指向尾结点,释放它
}
bool ListEmpty(LinkList *L)
{
    return(L->next==NULL);
}
int ListLength(LinkList *L)
{
    LinkList *p=L;
    int i=0;
    while (p->next!=NULL)
    {
        i++;
        p=p->next;
    }
    return(i);
}
void DispList(LinkList *L)
{
    LinkList *p=L->next;
    while (p!=NULL)
    {
        printf("%d ",p->data);
        p=p->next;
    }
    printf("\n");
}
bool GetElem(LinkList *L,int i,ElemType &e)
{
    int j=0;
    LinkList *p=L;
    while (j<i && p!=NULL)
    {
        j++;
        p=p->next;
    }
    if (p==NULL)            //不存在第i个数据结点
        return false;
    else                    //存在第i个数据结点
    {
        e=p->data;
        return true;
    }
}
int LocateElem(LinkList *L,ElemType e)
{
    LinkList *p=L->next;
    int n=1;
    while (p!=NULL && p->data!=e)
    {
        p=p->next;
        n++;
    }
    if (p==NULL)
        return(0);
    else
        return(n);
}
bool ListInsert(LinkList *&L,int i,ElemType e)
{
    int j=0;
    LinkList *p=L,*s;
    while (j<i-1 && p!=NULL) //查找第i-1个结点
    {
        j++;
        p=p->next;
    }
    if (p==NULL)    //未找到位序为i-1的结点
        return false;
    else            //找到位序为i-1的结点*p
    {
        s=(LinkList *)malloc(sizeof(LinkList));//创建新结点*s
        s->data=e;
        s->next=p->next;                        //将*s插入到*p之后
        p->next=s;
        return true;
    }
}
bool ListDelete(LinkList *&L,int i,ElemType &e)
{
    int j=0;
    LinkList *p=L,*q;
    while (j<i-1 && p!=NULL)    //查找第i-1个结点
    {
        j++;
        p=p->next;
    }
    if (p==NULL)                //未找到位序为i-1的结点
        return false;
    else                        //找到位序为i-1的结点*p
    {
        q=p->next;              //q指向要删除的结点
        if (q==NULL)
            return false;           //若不存在第i个结点,返回false
        e=q->data;
        p->next=q->next;        //从单链表中删除*q结点
        free(q);                //释放*q结点
        return true;
    }
}
void Link(LinkList *&L1, LinkList *&L2)
{
    LinkList *p = L1;
    while(p->next != NULL)   //找到L1的尾节点
        p = p->next;
    p->next = L2->next;  //将L2的首个数据节点连接到L1的尾节点后
    free(L2);   //释放掉已经无用的L2的头节点
}


测试函数代码:

#include <stdio.h>
#include <malloc.h>
#include "linklist.h"

int main()
{
    LinkList *A, *B;
    int i;
    ElemType a[]= {1,3,2,9};
    ElemType b[]= {0,4,7,6,5,8};
    InitList(A);
    for(i=3; i>=0; i--)
        ListInsert(A, 1, a[i]);
    InitList(B);
    for(i=5; i>=0; i--)
        ListInsert(B, 1, b[i]);
    Link(A, B);
    printf("A:");
    DispList(A);
    DestroyList(A);
    return 0;
}


运行结果:

分析复杂度:

        算法复杂度为O(m),只需要由L1的头节点找到L1的尾节点,将L2放入L1尾节点后,所以算法复杂度只与L1有关。

知识点总结:

       将L2连接到L1后面,首先找到L1的尾节点,然后将L2的首个数据节点连接到L1的尾节点后,最后释放掉已经无用的L2的头节点。应用已经做好的单链表算法库,只需要把连接L1和L2的函数以及main函数写好,就完成了。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值