在做将caffe模型和预训练的参数转化为tensorflow的模型和预训练的参数,以便微调,遇到如下函数:
- def gen_data(source):
- while True:
- indices = range(len(source.images)) # indices = the number of images in the source data set
- random.shuffle(indices)
- for i in indices:
- image = np.reshape(source.images[i], (28, 28, 1))
- label = source.labels[i]
- yield image, label
-
numpy.random.
shuffle
(
x
)
-
Modify a sequence in-place by shuffling its contents.
Parameters: x : array_like
The array or list to be shuffled.
Returns: None
举例
>>> arr = np.arange(10) >>> np.random.shuffle(arr) >>> arr [1 7 5 2 9 4 3 6 0 8]
This function only shuffles the array along the first index of a multi-dimensional array(多维矩阵中,只对第一维(行)做打乱顺序操作):
>>> arr = np.arange(9).reshape((3, 3)) >>> np.random.shuffle(arr) >>> arr array([[3, 4, 5], [6, 7, 8], [0, 1, 2]])This function only shuffles the array along the first index of a multi-dimensional array:
-
-
参考:·[1] https://docs.scipy.org/doc/numpy/reference/generated/numpy.random.shuffle.html#numpy-random-shuffle
-
[2] https://github.com/ethereon/caffe-tensorflow/blob/master/examples/mnist/finetune_mnist.py