codeforces 723E. One-Way Reform(欧拉回路||网络流)

time limit per test
2 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

There are n cities and m two-way roads in Berland, each road connects two cities. It is known that there is no more than one road connecting each pair of cities, and there is no road which connects the city with itself. It is possible that there is no way to get from one city to some other city using only these roads.

The road minister decided to make a reform in Berland and to orient all roads in the country, i.e. to make each road one-way. The minister wants to maximize the number of cities, for which the number of roads that begins in the city equals to the number of roads that ends in it.

Input

The first line contains a positive integer t (1 ≤ t ≤ 200) — the number of testsets in the input.

Each of the testsets is given in the following way. The first line contains two integers n and m (1 ≤ n ≤ 2000 ≤ m ≤ n·(n - 1) / 2) — the number of cities and the number of roads in Berland.

The next m lines contain the description of roads in Berland. Each line contains two integers u and v (1 ≤ u, v ≤ n) — the cities the corresponding road connects. It's guaranteed that there are no self-loops and multiple roads. It is possible that there is no way along roads between a pair of cities.

It is guaranteed that the total number of cities in all testset of input data doesn't exceed 200.

Pay attention that for hacks, you can only use tests consisting of one testset, so t should be equal to one.

Output

For each testset print the maximum number of such cities that the number of roads that begins in the city, is equal to the number of roads that ends in it.

In the next m lines print oriented roads. First print the number of the city where the road begins and then the number of the city where the road ends. If there are several answers, print any of them. It is allowed to print roads in each test in arbitrary order. Each road should be printed exactly once.

Example
input
2
5 5
2 1
4 5
2 3
1 3
3 5
7 2
3 7
4 2
output
3
1 3
3 5
5 4
3 2
2 1
3
2 4
3 7

题意:

有一个无向图,n个点,m条边,没有自环没有重边,将无向图变成有向图,给每条边定方向,使得最终入度等于出度的点的个数最多。

输出入度等于出度的点的个数,以及这m条有向边。

思路:

【先求无向图中每个点的度数,每次都从度数为奇数的点开始走,删掉走过的边,记录每个点的入度跟出度,一直走到不能走为止。恩 这样做有一个明显的错误 当输入的无向图是一个环的时候 就没有所谓的度数为奇数的点 因此在把度数为奇数的点处理完了之后还要检查是否存在偶数的点 (⊙o⊙)…】

#include <bits/stdc++.h>  
using namespace std;  
#define ll __int64  
const int N=1e6+10;  
  
int n, m;  
int line[250][250];  
vector<int>vec[250], vv[250];  
int ru[250], chu[250], du[250];  
queue<int>q;  

void solve(){
	while(!q.empty()){  
        int x = q.front();q.pop();  
        while(1){  
            int len = vec[x].size();  
            int flag = 0;  
            for(int i=0; i<len; i++){  
                int v = vec[x][i];  
                if(line[x][v]){  
                    line[x][v]--, line[v][x]--;  
                    du[x]--, du[v]--;  
                    chu[x]++, ru[v]++;  
                    vv[x].push_back(v);  
                    if(du[x]&1) q.push(x);  
                    if(du[v]&1) q.push(v);  
                    x = v;  
                    flag=1;  
                    break;  
                }  
            }  
            if(flag==0) break;  
        }  
    }  
}

int main(){  
    int t;  
    scanf("%d", &t);  
    while(t--){  
        memset(line, 0, sizeof(line));  
        scanf("%d%d", &n, &m);  
        for(int i=1; i<=n; i++) vec[i].clear(), vv[i].clear();  
        int u, v;  
        memset(du, 0, sizeof(du));  
        for(int i=0; i<m; i++){  
            scanf("%d%d", &u, &v);  
            line[u][v]++;  
            line[v][u]++;  
            vec[u].push_back(v);  
            vec[v].push_back(u);  
            du[u]++, du[v]++;  
        }  
  
        memset(ru, 0, sizeof(ru));  
        memset(chu, 0, sizeof(chu));  
        while(!q.empty()) q.pop();  
          
        for(int i=1; i<=n; i++){  
            if(du[i]&1) q.push(i);  
        }  
        solve();
        for(int i=1; i<=n; i++){  
            if(du[i]) q.push(i);  
        }  
        solve();
        int ans=0;  
        for(int i=1; i<=n; i++){  
            if(ru[i] == chu[i]) ans++;  
        }  
        printf("%d\n", ans);  
        for(int i=1; i<=n; i++){  
            int len = (int)vv[i].size();  
            for(int j=0; j<len; j++){  
                printf("%d %d\n", i, vv[i][j]);  
            }  
        }  
    }  
    return 0;  
}  






评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值