Count primes
Time Limit: 12000/6000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total Submission(s): 1079 Accepted Submission(s): 606
Problem Description
Easy question! Calculate how many primes between [1...n]!
Input
Each line contain one integer n(1 <= n <= 1e11).Process to end of file.
Output
For each case, output the number of primes in interval [1...n]
Sample Input
2 3 10
Sample Output
1 2 4
Source
#include <bits/stdc++.h>
using namespace std;
#define ll __int64
const int N=320005;
ll phi[10005][105], p2[N], ans[N];
int len, vis[N];
void init(){
len = 0;
for(int i=2; i<N; i++){
if(!vis[i]){
for(int j=i+i; j<N; j+=i) vis[j]=1;
p2[len++] = i;
ans[i] = ans[i-1]+1;
continue;
}
ans[i] = ans[i-1];
}
for(int i=0; i<=10000; i++){
phi[i][0] = (ll)i;
for(int j=1; j<=100; j++){
phi[i][j] = phi[i][j-1] - phi[i/p2[j-1]][j-1];
}
}
}
ll solve_phi(ll m, ll n){
if(!n) return m;
if(p2[n - 1] >= m) return 1;
if(m<=10000 && n<=100) return phi[m][n];
return solve_phi(m, n-1) - solve_phi(m/p2[n-1], n-1);
}
ll solve_p2(ll m){
if(m < (ll)N) return ans[m];
ll y = (int)cbrt(m*1.0);
ll n = ans[y];
ll sum = solve_phi(m, n) + n -1;
for(ll i=n; p2[i]*p2[i]<=m; i++) //参考博客中的范围有误
sum = sum - solve_p2(m/p2[i])+solve_p2(p2[i])-1;
return sum;
}
int main(){
init();
ll n;
while(scanf("%I64d", &n)!=EOF){
printf("%I64d\n", solve_p2(n));
}
return 0;
}
这个博客中还有两个模板,其中第二个模板跑的比较快:http://blog.youkuaiyun.com/chaiwenjun000/article/details/52589457
以下两个模板代码引自上面连接中的模板
模板代码一:
复杂度大概O(n^(3/4))
#include <bits/stdc++.h>
#define ll long long
using namespace std;
ll f[340000],g[340000],n;
void init(){
ll i,j,m;
for(m=1;m*m<=n;++m)f[m]=n/m-1;
for(i=1;i<=m;++i)g[i]=i-1;
for(i=2;i<=m;++i){
if(g[i]==g[i-1])continue;
for(j=1;j<=min(m-1,n/i/i);++j){
if(i*j<m)f[j]-=f[i*j]-g[i-1];
else f[j]-=g[n/i/j]-g[i-1];
}
for(j=m;j>=i*i;--j)g[j]-=g[j/i]-g[i-1];
}
}
int main(){
while(scanf("%I64d",&n)!=EOF){
init();
cout<<f[1]<<endl;
}
return 0;
}
模板代码二:
复杂度O(n^(2/3))
#include<cstdio>
#include<cmath>
using namespace std;
#define LL long long
const int N = 5e6 + 2;
bool np[N];
int prime[N], pi[N];
int getprime()
{
int cnt = 0;
np[0] = np[1] = true;
pi[0] = pi[1] = 0;
for(int i = 2; i < N; ++i)
{
if(!np[i]) prime[++cnt] = i;
pi[i] = cnt;
for(int j = 1; j <= cnt && i * prime[j] < N; ++j)
{
np[i * prime[j]] = true;
if(i % prime[j] == 0) break;
}
}
return cnt;
}
const int M = 7;
const int PM = 2 * 3 * 5 * 7 * 11 * 13 * 17;
int phi[PM + 1][M + 1], sz[M + 1];
void init()
{
getprime();
sz[0] = 1;
for(int i = 0; i <= PM; ++i) phi[i][0] = i;
for(int i = 1; i <= M; ++i)
{
sz[i] = prime[i] * sz[i - 1];
for(int j = 1; j <= PM; ++j) phi[j][i] = phi[j][i - 1] - phi[j / prime[i]][i - 1];
}
}
int sqrt2(LL x)
{
LL r = (LL)sqrt(x - 0.1);
while(r * r <= x) ++r;
return int(r - 1);
}
int sqrt3(LL x)
{
LL r = (LL)cbrt(x - 0.1);
while(r * r * r <= x) ++r;
return int(r - 1);
}
LL getphi(LL x, int s)
{
if(s == 0) return x;
if(s <= M) return phi[x % sz[s]][s] + (x / sz[s]) * phi[sz[s]][s];
if(x <= prime[s]*prime[s]) return pi[x] - s + 1;
if(x <= prime[s]*prime[s]*prime[s] && x < N)
{
int s2x = pi[sqrt2(x)];
LL ans = pi[x] - (s2x + s - 2) * (s2x - s + 1) / 2;
for(int i = s + 1; i <= s2x; ++i) ans += pi[x / prime[i]];
return ans;
}
return getphi(x, s - 1) - getphi(x / prime[s], s - 1);
}
LL getpi(LL x)
{
if(x < N) return pi[x];
LL ans = getphi(x, pi[sqrt3(x)]) + pi[sqrt3(x)] - 1;
for(int i = pi[sqrt3(x)] + 1, ed = pi[sqrt2(x)]; i <= ed; ++i) ans -= getpi(x / prime[i]) - i + 1;
return ans;
}
LL lehmer_pi(LL x)
{
if(x < N) return pi[x];
int a = (int)lehmer_pi(sqrt2(sqrt2(x)));
int b = (int)lehmer_pi(sqrt2(x));
int c = (int)lehmer_pi(sqrt3(x));
LL sum = getphi(x, a) +(LL)(b + a - 2) * (b - a + 1) / 2;
for (int i = a + 1; i <= b; i++)
{
LL w = x / prime[i];
sum -= lehmer_pi(w);
if (i > c) continue;
LL lim = lehmer_pi(sqrt2(w));
for (int j = i; j <= lim; j++) sum -= lehmer_pi(w / prime[j]) - (j - 1);
}
return sum;
}
int main()
{
init();
LL n;
while(~scanf("%lld",&n))
{
printf("%lld\n",lehmer_pi(n));
}
return 0;
}