今天开始将开启系列AI应用开发课程,主要基于LangChain框架基于实战项目手把手教大家如何将AI这一新时代的基础设施应用到自己开发应用中来。欢迎大家持续关注
当下在AI应用开发领域,LangChain框架可以说是唯一选择。然而,上手学习的小伙伴们大多被拦在了第一步,没有可供使用的AI大模型底座,没有可供实验的环境进行实操。而各大厂商比如OpenAI提供的API需要付费不说,从注册、开通到使用都有诸多的不便和限制。
因此,如何在本地或者私有网络中部署和使用AI大模型,成为了一个亟待解决的挑战。本文将以Baichuan2-13B-Chat-4bits为例,介绍如何进行AI大模型私有部署,用于LangChain开发实验实操。本次课程提纲如下,今天主要降大模型部署的部分。
基础环境
环境配置与安装
1.python 3.8及以上版本,官网安装即可
地址:https://www.python.org/
2.pytorch 1.12及以上版本,推荐2.0及以上版本,官网安装即可
地址:https://pytorch.org/get-started/locally/
3.建议使用CUDA 11.4及以上,根据显卡匹配英伟达推荐驱动进行暗转
地址:https://developer.nvidia.com/cuda-11-4-0-download-archive
4.建议使用linux环境安装,本文示例基于linux环境演示
5.假定以下动作执行的当前目录为/aidev
模型下载
要在LangChain开发环境中部署AI大模型,首先需要下载模型文件和配置文件。Baichuan2-13B-Chat-4bits模型已经上传到了huggingface这个知名的AI模型库中,我们可以通过以下步骤来下载它:
从huggingface上下载模型及配置文件
- 模型下载链接如下
https://huggingface.co/baichuan-inc/Baichuan2-13B-Chat-4bits
- 在模型页面中,点击右上角的
Download
按钮,选择Download files
选项。
3. linux系统可以直接通过以下脚本下载
apt-get -y install -qq aria2
aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/baichuan-inc/Baichuan2-13B-Chat-4bits/raw/main/config.json -d /content/baichuan-inc/Baichuan2-13B-Chat-4bits -o config.json
aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/baichuan-inc/Baichuan2-13B-Chat-4bits/raw/main/configuration_baichuan.py -d /content/baichuan-inc/Baichuan2-13B-Chat-4bits -o configuration_baichuan.py
aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/baichuan-inc/Baichuan2-13B-Chat-4bits/raw/main/generation_config.json -d /content/baichuan-inc/Baichuan2-13B-Chat-4bits -o generation_config.json
aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/baichuan-inc/Baichuan2-13B-Chat-4bits/raw/main/generation_utils.py -d /content/baichuan-inc/Baichuan2-13B-Chat-4bits -o generation_utils.py
aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/baichuan-inc/Baichuan2-13B-Chat-4bits/raw/main/handler.py -d /content/baichuan-inc/Baichuan2-13B-Chat-4bits -o handler.py
aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/baichuan-inc/Baichuan2-13B-Chat-4bits/raw/main/modeling_baichuan.py -d /content/baichuan-inc/Baichuan2-13B-Chat-4bits -o modeling_baichuan.py
aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/baichuan-inc/Baichuan2-13B-Chat-4bits/resolve/main/pytorch_model.bin -d /content/baichuan-inc/Baichuan2-13B-Chat-4bits -o pytorch_model.bin
aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/baichuan-inc/Baichuan2-13B-Chat-4bits/raw/main/quantizer.py -d /content/baichuan-inc/Baichuan2-13B-Chat-4bits -o quantizer.py
aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/baichuan-inc/Baichuan2-13B-Chat-4bits/raw/main/requirements.txt -d /content/baichuan-inc/Baichuan2-13B-Chat-4bits -o requirements.txt
aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/baichuan-inc/Baichuan2-13B-Chat-4bits/raw/main/special_tokens_map.json -d /content/baichuan-inc/Baichuan2-13B-Chat-4bits -o special_tokens_map.json
aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/baichuan-inc/Baichuan2-13B-Chat-4bits/raw/main/tokenization_baichuan.py -d /content/baichuan-inc/Baichuan2-13B-Chat-4bits -o tokenization_baichuan.py
aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/baichuan-inc/Baichuan2-13B-Chat-4bits/resolve/main/tokenizer.model -d /content/baichuan-inc/Baichuan2-13B-Chat-4bits -o tokenizer.model
aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/baichuan-inc/Baichuan2-13B-Chat-4bits/raw/main/tokenizer_config.json -d /content/baichuan-inc/Baichuan2-13B-Chat-4bits -o tokenizer_config.json
基础依赖安装
下载好模型文件和配置文件后,主目录为/aidev,文件目录为baichuan-inc/Baichuan2-13B-Chat-4bits(备注后续启动模型会默认加载此目录,请按此命名) ,我们还需要安装一些基础的依赖库,以便于在LangChain开发环境中运行模型。我们可以通过以下步骤来安装:
#pip安装模型运行的依赖,requirment.txt文件
pip install -r baichuan-inc/Baichuan2-13B-Chat-4bits/requirements.txt
这样就完成了基础依赖库的安装。
模型测试
安装好基础依赖库后,我们可以先测试一下模型是否能够正常运行。我们可以通过以下步骤来测试:
基于官方示例,创建模型对象,并调用对话方法
- 在当前目录即/aidev中创建一个名为
app.py
的文件,并输入以下内容:
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers.generation.utils import GenerationConfig
tokenizer = AutoTokenizer.from_pretrained("baichuan-inc/Baichuan2-13B-Chat-4bits", use_fast=False, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("baichuan-inc/Baichuan2-13B-Chat-4bits", device_map="auto", torch_dtype=torch.bfloat16, trust_remote_code=True)
model.generation_config = GenerationConfig.from_pretrained("baichuan-inc/Baichuan2-13B-Chat-4bits")
messages = []
messages.append({"role": "user", "content": "解释一下“温故而知新”"})
response = model.chat(tokenizer, messages)
print(response)
- 启用测试
python app.py
运行效果如下图所示
基于FastAPI创建模型访问接口示例
测试好模型后,我们已经掌握了与大模型对话的入口,可以进一步基于FastAPI创建一个模型访问接口,这样就可以让外部的应用或者用户通过网络来调用我们部署在LangChain开发环境中的AI大模型。我们可以通过以下步骤来创建:
- 安装uvicorn
pip install uvicorn
- 在当前目录即/aidev中创建一个名为
api.py
的文件,并输入以下内容:
from fastapi import FastAPI
from fastapi import HTTPException
from pydantic import BaseModel
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers.generation.utils import GenerationConfig
tokenizer = AutoTokenizer.from_pretrained("baichuan-inc/Baichuan2-13B-Chat-4bits", use_fast=False, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("baichuan-inc/Baichuan2-13B-Chat-4bits", device_map="auto", torch_dtype=torch.bfloat16, trust_remote_code=True)
model.generation_config = GenerationConfig.from_pretrained("baichuan-inc/Baichuan2-13B-Chat-4bits")
app = FastAPI()
# This defines the data json format expected for the endpoint, change as needed
class RequestItem(BaseModel):
message: str
@app.post("/generate/")
async def generate_text(request_item: RequestItem):
try:
# 在这里处理接收到的 JSON 请求
reqStr = request_item.message
messages = []
messages.append({"role": "user", "content": reqStr})
response = model.chat(tokenizer,messages)
return {"generated_text": response}
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
- 启动接口
uvicorn app:app --host 0.0.0.0 --port 8000 > server.log 2>&1 &
- 使用测试如下图所示
总结
本文介绍了如何在LangChain开发环境中准备AI大模型私有部署的技术指南,以Baichuan2-13B-Chat-4bits为例,分别介绍了模型下载、基础依赖安装、模型测试和基于FastAPI创建模型访问接口的步骤和代码。当然只是简单的提供对话接口的话,还无法将大模型接入langchain的开发流程中。
如何系统的去学习大模型LLM ?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
事实上,抢你饭碗的不是AI,而是会利用AI的人。
继科大讯飞、阿里、华为
等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?
与其焦虑……
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。
基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!
在这个版本当中:
第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言
您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
一、LLM大模型经典书籍
AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。
二、640套LLM大模型报告合集
这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
三、LLM大模型系列视频教程
四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)
五、AI产品经理大模型教程
LLM大模型学习路线 ↓
阶段1:AI大模型时代的基础理解
-
目标:了解AI大模型的基本概念、发展历程和核心原理。
-
内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践
- L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
-
目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
-
内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例
- L2.2 Prompt框架
- L2.3 流水线工程
- L2.4 总结与展望
阶段3:AI大模型应用架构实践
-
目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
-
内容:
- L3.1 Agent模型框架
- L3.2 MetaGPT
- L3.3 ChatGLM
- L3.4 LLAMA
- L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
-
目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
-
内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
这份 LLM大模型资料
包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓