pytorch-15-Train_Val_Test&交叉验证

本文详细探讨了使用PyTorch进行深度学习模型的训练、验证和测试流程,包括数据集划分、交叉验证的概念及其在PyTorch中的实现,旨在提升模型的泛化能力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

import  torch
import  torch.nn as nn
import  torch.nn.functional as F
import  torch.optim as optim
from    torchvision import datasets, transforms


batch_size=200
learning_rate=0.01
epochs=10

train_db = datasets.MNIST('./data', train=True, download=True,
                   transform=transforms.Compose([
                       transforms.ToTensor(),
                       transforms.Normalize((0.1307,), (0.3081,))
                   ]))
train_loader = torch.utils.data.DataLoader(
    train_db,
    batch_size=batch_size, shuffle=True)

test_db = datasets.MNIST('./data', train=False, transform=transforms.Compose([
    transforms.ToTensor(),
    transfo
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值