1.26、基于概率神经网络(PNN)的分类(matlab)

1、基于概率神经网络(PNN)的分类简介

PNN(Probabilistic Neural Network,概率神经网络)是一种基于概率论的神经网络模型,主要用于解决分类问题。PNN最早由马科夫斯基和马西金在1993年提出,是一种非常有效的分类算法。

PNN的原理可以简单概括为以下几个步骤:

  1. 数据输入层:将输入的样本数据分别输入到模型中。
  2. 模式层:对每个输入数据进行模式匹配,计算其与指定类别之间的相似度得分。
  3. 模式比较层:将所有类别的相似度得分进行比较,找到得分最高的类别作为最终分类结果。

PNN具有以下特点:

  1. 高效性:PNN的训练速度较快,且在实际应用中表现出较高的分类准确率。
  2. 鲁棒性:PNN对噪声和异常值具有较强的鲁棒性,能够有效处理复杂的分类问题。
  3. 容易解释:PNN的结果可以直观地解释,使得用户可以更好地理解模型的分类依据。

总的来说,PNN是一种非常有效的分类算法,适用于各种不同领域的分类问题,如图像识别、文本分类等。

2、基于概率神经网络(PNN)的分类说明及关键函数

1)说明

此处有三个二元输入向量 X 和它们相关联的类 Tc。
创建 y 概率神经网络,对这些向量正确分类。

2)重要函数

newpnn()函数:<

评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

逼子歌

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值