51Nod 1535 思维+DFS

这篇博客介绍了51Nod 1535题目,解析了该问题的关键在于图的特性,即边的数量等于点的数量,并且存在一个环。博主通过DFS算法来判断图的连通性,从而解决问题。文中提供了具体的解题思路和代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

51Nod 1535


思路:
根据图的性质,一定是在一棵树的基础上有一个环,故边的条数一定等于点的数目。

然后再DFS判断一下是否连通即可。


代码:

#include<cmath>
#include<string>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;

const int A = 100 + 10;
class Gra{
public:
    int v,next;
}G[A*A*2];
int head[A],tot,n,m;
bool vis[A];

void add(int u,int v){
    G[tot].v = v;
    G[tot].next = head[u];
    head[u] = tot++;
}

void dfs(int u,int pre){
    vis[u] = true;
    for(int i=head[u] ;i!=-1 ;i=G[i].next){
        int v = G[i].v;
        if(v == pre || vis[v]) continue;
        dfs(v,u);
    }
}

bool check(){
    if(n != m) return false;
    memset(vis,0,sizeof(vis));
    bool flag = false;
    for(int i=1 ;i<=n ;i++){
        if(!vis[i]){
            if(flag) return false;
            flag = true;
            dfs(i,0);
        }
    }
    return true;
}

int main(){
    scanf("%d%d",&n,&m);
    memset(head,-1,sizeof(head));tot = 0;
    for(int i=1 ;i<=m ;i++){
        int u,v;scanf("%d%d",&u,&v);
        add(u,v);add(v,u);
    }
    if(check()) puts("FHTAGN!");
    else        puts("NO");
    return 0;
}

内容概要:本文详细介绍了扫描单分子定位显微镜(scanSMLM)技术及其在三维超分辨体积成像中的应用。scanSMLM通过电调透镜(ETL)实现快速轴向扫描,结合4f检测系统将不同焦平面的荧光信号聚焦到固定成像面,从而实现快速、大视场的三维超分辨成像。文章不仅涵盖了系统硬件的设计与实现,还提供了详细的软件代码实现,包括ETL控制、3D样本模拟、体积扫描、单分子定位、3D重建和分子聚类分析等功能。此外,文章还比较了循环扫描与常规扫描模式,展示了前者在光漂白效应上的优势,并通过荧光珠校准、肌动蛋白丝、线粒体网络和流感A病毒血凝素(HA)蛋白聚类的三维成像实验,验证了系统的性能和应用潜力。最后,文章深入探讨了HA蛋白聚类与病毒感染的关系,模拟了24小时内HA聚类的动态变化,提供了从分子到细胞尺度的多尺度分析能力。 适合人群:具备生物学、物理学或工程学背景,对超分辨显微成像技术感兴趣的科研人员,尤其是从事细胞生物学、病毒学或光学成像研究的科学家和技术人员。 使用场景及目标:①理解和掌握scanSMLM技术的工作原理及其在三维超分辨成像中的应用;②学习如何通过Python代码实现完整的scanSMLM系统,包括硬件控制、图像采集、3D重建和数据分析;③应用于单分子水平研究细胞内结构和动态过程,如病毒入侵机制、蛋白质聚类等。 其他说明:本文提供的代码不仅实现了scanSMLM系统的完整工作流程,还涵盖了多种超分辨成像技术的模拟和比较,如STED、GSDIM等。此外,文章还强调了系统在硬件改动小、成像速度快等方面的优势,为研究人员提供了从理论到实践的全面指导。
内容概要:本文详细介绍了基于Seggiani提出的渣层计算模型,针对Prenflo气流床气化炉中炉渣的积累和流动进行了模拟。模型不仅集成了三维代码以提供气化炉内部的温度和浓度分布,还探讨了操作条件变化对炉渣行为的影响。文章通过Python代码实现了模型的核心功能,包括炉渣粘度模型、流动速率计算、厚度更新、与三维模型的集成以及可视化展示。此外,还扩展了模型以考虑炉渣组成对特性的影响,并引入了Bingham流体模型,更精确地描述了含未溶解颗粒的熔渣流动。最后,通过实例展示了氧气-蒸汽流量增加2%时的动态响应,分析了温度、流动特性和渣层分布的变化。 适合人群:从事煤气化技术研究的专业人士、化工过程模拟工程师、以及对工业气化炉操作优化感兴趣的科研人员。 使用场景及目标:①评估不同操作条件下气化炉内炉渣的行为变化;②预测并优化气化炉的操作参数(如温度、氧煤比等),以防止炉渣堵塞;③为工业气化炉的设计和操作提供理论支持和技术指导。 其他说明:该模型的实现基于理论公式和经验数据,为确保模型准确性,实际应用中需要根据具体气化炉的数据进行参数校准。模型还考虑了多个物理场的耦合,包括质量、动量和能量守恒方程,能够模拟不同操作条件下的渣层演变。此外,提供了稳态求解器和动态模拟工具,可用于扰动测试和工业应用案例分析。
### 关于51Nod 3100 上台阶问题的C++解法 #### 题目解析 该题目通常涉及斐波那契数列的应用。假设每次可以走一步或者两步,那么到达第 \( n \) 层台阶的方法总数等于到达第 \( n-1 \) 层和第 \( n-2 \) 层方法数之和。 此逻辑可以通过动态规划来解决,并且为了防止数值过大,需要对结果取模操作(如 \( \% 100003 \)[^1])。以下是基于上述思路的一个高效实现: ```cpp #include <iostream> using namespace std; const int MOD = 100003; long long f[100010]; int main() { int n; cin >> n; // 初始化前两项 f[0] = 1; // 到达第0层有1种方式(不移动) f[1] = 1; // 到达第1层只有1种方式 // 动态规划计算f[i] for (int i = 2; i <= n; ++i) { f[i] = (f[i - 1] + f[i - 2]) % MOD; } cout << f[n] << endl; return 0; } ``` 以上代码通过数组 `f` 存储每层台阶的结果,利用循环逐步填充至目标层数 \( n \),并最终输出结果。 --- #### 时间复杂度分析 由于仅需一次线性遍历即可完成所有状态转移,时间复杂度为 \( O(n) \)。空间复杂度同样为 \( O(n) \),但如果优化存储,则可进一步降低到 \( O(1) \): ```cpp #include <iostream> using namespace std; const int MOD = 100003; int main() { int n; cin >> n; long long prev2 = 1, prev1 = 1, current; if (n == 0 || n == 1) { cout << 1 << endl; return 0; } for (int i = 2; i <= n; ++i) { current = (prev1 + prev2) % MOD; prev2 = prev1; prev1 = current; } cout << prev1 << endl; return 0; } ``` 在此版本中,只保留最近两个状态变量 (`prev1`, `prev2`) 来更新当前值,从而节省内存开销。 --- #### 输入输出说明 输入部分接受单个整数 \( n \),表示台阶数量;程序会返回从地面走到第 \( n \) 层的不同路径数目,结果经过指定模运算处理以适应大范围数据需求。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值