Description
Windy has a country, and he wants to build an army to protect his country. He has picked up N girls and M boys and wants to collect them to be his soldiers. To collect a soldier without any privilege, he must pay 10000 RMB. There are some relationships between girls and boys and Windy can use these relationships to reduce his cost. If girl x and boy y have a relationship d and one of them has been collected, Windy can collect the other one with 10000-d RMB. Now given all the relationships between girls and boys, your assignment is to find the least amount of money Windy has to pay. Notice that only one relationship can be used when collecting one soldier.
Input
The first line of input is the number of test case.
The first line of each test case contains three integers, N, M and R.
Then R lines followed, each contains three integers xi, yi and di.
There is a blank line before each test case.
1 ≤ N, M ≤ 10000
0 ≤ R ≤ 50,000
0 ≤ xi < N
0 ≤ yi < M
0 < di < 10000
Output
For each test case output the answer in a single line.
Sample Input
2
5 5 8
4 3 6831
1 3 4583
0 0 6592
0 1 3063
3 3 4975
1 3 2049
4 2 2104
2 2 781
5 5 10
2 4 9820
3 2 6236
3 1 8864
2 4 8326
2 0 5156
2 0 1463
4 1 2439
0 4 4373
3 4 8889
2 4 3133
Sample Output
71071
54223
Source
POJ Monthly Contest – 2009.04.05, windy7926778
最小生成树 Kruskal emmm这个东西居然叫最大权森林 还有 用cin cout 蜜汁超时 改成scanf print才A mmp
#include <iostream>
#include <cstring>
#include <cstdio>
//#pragma GCC optimize(2)
#include<time.h>
#include <map>
#include <queue>
#include <stack>
#include <cmath>
#include <algorithm>
using namespace std;
#define maxn 50005
#define inf 1e18
#define eps 0.00001
typedef long long ll;
const ll mod = 1e9+7;
//const double pi = acos(-1);
struct Why
{
int a,b,c;
}arr[maxn];
int n,m,r,T,R[maxn],ans,k;
bool cmp(Why a,Why b)
{
return a.c < b.c;
}
ll fi(ll x)
{
return R[x] == x? x: R[x] = fi( R[x] );
}
void slove()
{
ll num = 0;
for(ll i = 1; i <= r; i++)
{
if( fi(arr[i].a) != fi(arr[i].b) )
{
ans += arr[i].c;
R[ fi(arr[i].b) ] = arr[i].a;
num++;
}
if(num == k - 1)
break;
}
return ;
}
int main()
{
//ios::sync_with_stdio(false);
//cin.tie(0);cout.tie(0);
//freopen("D:\\test1.in","w",stdout);
//srand((int)time(0));
scanf("%d", &T);
while(T--)
{
ans = 0;
scanf("%d%d%d", &n, &m, &r);
k = n+m;
for(ll i = 1; i <= r; i++)
{
scanf("%d%d%d",&arr[i].a, &arr[i].b, &arr[i].c);
arr[i].b += n;
arr[i].c = -arr[i].c;
}
sort(arr+1,arr+1+r,cmp);
for(ll i = 0; i < k; i++)
R[i] = i;
slove();
cout << (n+m)*10000 + ans << endl;
}
return 0;
}
最小生成树算法解析

本文深入探讨了最小生成树算法在解决特定问题中的应用,通过一个具体的案例——帮助Windy组建军队并最小化成本,详细解释了如何使用Kruskal算法来寻找连接所有节点的最小权重边集合,同时避免形成环路,最终实现总成本最低的目标。
169

被折叠的 条评论
为什么被折叠?



