yoloV5 crowded student 检测的传统筛选流程

1 安装yolov5-filter

apt-get update
apt-get install zip
apt-get install unzip
conda install x264 ffmpeg -c conda-forge -y
cd /home
git clone https://gitee.com/YFwinston/yolov5-filter.git
cd yolov5-filter
pip install -r requirements.txt
pip install opencv-python-headless==4.1.2.30

mkdir -p /root/.config/Ultralytics/
cp /user-data/yolov5File/crowdhuman_vbody_yolov5m.pt /home/yolov5-filter/crowdhuman_vbody_yolov5m.pt 
cp /user-data/yolov5File/Arial.ttf /root/.config/Ultralytics/Arial.ttf
cd /home/yolov5-filter
mkdir chooseVideoFrameYolov5
mkdir chooseVideoFrame

在chooseVideoFrame中上传待检测的图片

2 开始检测

如果之前检测过,则要先做清除

cd /home/yolov5-filter

cd /home/yolov5-filter
rm -r ./chooseVideoFrameYolov5/*
python ./detect.py --source ./chooseVideoFrame/ --save-txt --save-conf  --weights ./crowdhuman_vbody_yolov5m.pt --hide-labels --line-thickness 2 --project ./chooseVideoFrameYolov5

3 yoloV5转via

cd /home/yolov5-filter
python yolo2via.py --yoloLabel_dir ./chooseVideoFrameYolov5/exp/labels --image_dir ./chooseVideoFrame

4 传统筛选

cd /home/yolov5-filter
mkdir -p ./chooseVideoFrameYolov5/newExp/
mkdir -p ./visualize
rm -r  ./chooseVideoFrameYolov5/newExp/*
rm -r ./visualize/*
python filter.py --label_dir ./chooseVideoFrameYolov5/exp/labels --image_dir ./chooseVideoFrame/ --newExp_dir ./chooseVideoFrameYolov5/newExp/
rm x.zip
zip -r x.zip ./visualize/
cd /home/yolov5-filter
mkdir -p ./chooseVideoFrameYolov5/newExp/
mkdir -p ./visualize
rm -r  ./chooseVideoFrameYolov5/newExp/*
rm -r ./visualize/*
python filter2.py --label_dir ./chooseVideoFrameYolov5/exp/labels --image_dir ./chooseVideoFrame/ --newExp_dir ./chooseVideoFrameYolov5/newExp/ --r_wh 0.15 --r_area1 0.7 --r_area2 0.7 --r_area3 0.5

5 筛选后转via

cd /home/yolov5-filter
python yolo2via.py --yoloLabel_dir ./chooseVideoFrameYolov5/newExp/ --image_dir ./chooseVideoFrame --labelName_dir detections.json
cd /home/yolov5-filter
zip -r  chooseVideoFrame.zip ./chooseVideoFrame
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

CSPhD-winston-杨帆

给我饭钱

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值