大意略。
思路:组合数学神马的,最难思考了。
我想这道题的结论可以记下来,即:满K叉树的前i层的不同的树的数量为:f[i-1]^K + 1
参考了这篇博客:解法
#include <iostream>
#include <cstdlib>
#include <cstdio>
#include <cstring>
#include <cstdio>
#include <queue>
#include <cmath>
using namespace std;
const int MAXN = 1010;
int base, n;
struct bign
{
int s[MAXN], len;
bign () {memset(s, 0, sizeof(s)); len = 1;}
bign (int num) { *this = num;}
bign (const char *num) {*this = num;}
bign operator = (int num)
{
char s[MAXN];
sprintf(s, "%d", num);
*this = s;
return *this;
}
bign operator = (const char *num)
{
len = strlen(num);
for(int i = 0; i < len; i++) s[i] = num[len-i-1] - '0';
return *this;
}
bign operator + (const bign &b)
{
bign c;
c.len = 0;
for(int i = 0, g = 0; g || i < max(len, b.len); i++)
{
int x = g;
if(i < len) x += s[i];
if(i < b.len) x += b.s[i];
c.s[c.len++] = x % 10;
g = x / 10;
}
return c;
}
void clean()
{
while(len > 1 && !s[len-1]) len--;
}
bign operator - (const bign &b)
{
bign c;
c.len = 0;
for(int i = 0, g = 0; i < len; i++)
{
int x = s[i] - g;
if(i < b.len) x -= b.s[i];
if(x >= 0) g = 0;
else
{
g = 1;
x += 10;
}
c.s[c.len++] = x;
}
c.clean();
return c;
}
bign operator * (const bign &b)
{
bign c;
c.len = len + b.len;
for(int i = 0; i < len; i++)
{
for(int j = 0; j < b.len; j++)
{
c.s[i+j] += s[i] * b.s[j];
}
}
for(int i = 0; i < c.len; i++)
{
c.s[i+1] += c.s[i] / 10;
c.s[i] %= 10;
}
c.clean();
return c;
}
bign operator *= (const bign &b)
{
*this = *this * b;
return *this;
}
string str() const
{
string res = "";
for(int i = 0; i < len; i++) res = char(s[i]+'0') + res;
if(res == "") res = "0";
return res;
}
}f[2020];
ostream& operator << (ostream &out, const bign &x)
{
out << x.str();
return out;
}
void cal()
{
f[0] = 1;
for(int i = 1; i <= n; i++)
{
bign temp = 1;
for(int j = 1; j <= base; j++)
{
temp *= f[i-1];
}
f[i] = temp+1;
}
}
void solve()
{
printf("%d %d ", base, n);
cout<<f[n]-f[n-1]<<endl;
}
int main()
{
while(~scanf("%d%d", &base, &n) && (base || n))
{
cal();
solve();
}
return 0;
}
本文介绍了一种计算满K叉树前i层不同树数量的方法,并提供了详细的C++实现代码。通过递推公式f[i-1]^K+1得出结论,使用大数运算处理可能的数值溢出。

被折叠的 条评论
为什么被折叠?



