(1)有N堆石子,现要将石子有序的合并成一堆,规定如下:每次只能移动相邻的2堆石子合并,合并花费为新合成的一堆石子的数量。求将这N堆石子合并成一堆的总花费最小(或最大)。
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <string>
#include <cmath>
#include <cstdio>
#include <algorithm>
#define N 600
#define M 2000
#define INF 0x3f3f3f3f
#include <queue>
using namespace std;
int arr[N];
int mdp[N][N];
int Mdp[N][N];
int sum[N] = {0};
int main()
{
int n;
cin >> n;
memset(mdp, INF, sizeof(mdp));
for(int i = 1; i <= n; i++)
{
cin >> arr[i];
arr[i + n] = arr[i];
sum[i] = sum[i - 1] + arr[i];
mdp[i][i] = 0;
Mdp[i][i] = 0;
}
for(int i = 2; i <= n; i++)
{
for(int j = 1; j <= n; j++)
{
int s = j, e = j + i - 1;
if(e > n)
{
break;
}
int ch = (sum[e] - sum[s - 1]);
for(int k = j; k < e; k++)
{
mdp[s][e] = min(mdp[s][e], mdp[s][k] + mdp[k + 1][e] + ch);
Mdp[s][e] = max(Mdp[s][e], Mdp[s][k] + Mdp[k + 1][e] + ch);
}
}
}
cout << mdp[1][n] << endl;
cout << Mdp[1][n] << endl;
return 0;
}
(2)在一个圆形操场的四周摆放着n堆石子。现要将石子有次序地合并成一堆。规定每次只能选相邻的2 堆石子合并成新的一堆,并将新的一堆石子数记为该次合并的得分。试设计一个算法,计算出将n堆石子合并成一堆的最小得分和最大得分。
对于给定n堆石子,计算合并成一堆的最小得分和最大得分。
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <string>
#include <cmath>
#include <cstdio>
#include <algorithm>
#define N 600
#define M 2000
#define INF 0x3f3f3f3f
#include <queue>
using namespace std;
int arr[N];
int mdp[N][N];
int Mdp[N][N];
int n;
int sum[N] = {0};
int getSum(int a, int b)
{
//return (sum[b] - sum[a] + arr[a] + sum[n - 1]) % sum[n - 1];
if(b >= a)
{
return sum[b] - sum[a] + arr[a];
}
else
{
return sum[n - 1] - (sum[a] - sum[b] - arr[a]);
}
}
int main()
{
cin >> n;
memset(mdp, INF, sizeof(mdp));
for(int i = 0; i < n; i++)
{
cin >> arr[i];
if(i == 0)
{
sum[i] = arr[i];
}
else
{
sum[i] = sum[i - 1] + arr[i];
}
mdp[i][i] = Mdp[i][i] = 0;
}
for(int i = 2; i <= n; i++)
{
for(int j = 0; j < n; j++)
{
int s = j, e = j + i - 1;
int ch = getSum(s, e % n);
for(int k = s; k < e; k++)
{
int t = e % n;
mdp[s][t] = min(mdp[s][t], mdp[s][k % n] + mdp[(k + 1) % n][t] + ch);
Mdp[s][t] = max(Mdp[s][t], Mdp[s][k % n] + Mdp[(k + 1) % n][t] + ch);
}
}
}
int Min = INF, Max = -1;
for(int i = 0; i < n; i++)
{
int e = (i + n - 1) % n;
Min = min(Min, mdp[i][e]);
Max = max(Max, Mdp[i][e]);
}
cout << Min<< endl;
cout << Max << endl;
return 0;
}