常见算法思想
核心的东西,日后丰富。
1)穷举法:
穷举法的基本思想是根据题目的部分条件确定答案的大致范围,并在此范围内对所有可能的情况逐一验证,直到全部情况验证完毕。若某个情况验证符合题目的全部条件,则为本问题的一个解;若全部情况验证后都不符合题目的全部条件,则本题无解。穷举法也称为枚举法。
常用的三种穷举法:
(a)顺序列举 是指答案范围内的各种情况很容易与自然数对应甚至就是自然数,可以按自然数的变化顺序去列举。
(b)排列列举 有时答案的数据形式是一组数的排列,列举出所有答案所在范围内的排列,为排列列举。
(c)组合列举 当答案的数据形式为一些元素的组合时,往往需要用组合列举。组合是无序的。
2)贪心法:
贪心算法(又称贪婪算法)是指,在对问题求解时,总是做出在当前看来是最好的选择。也就是说,不从整体最优上加以考虑,他所做出的是在某种意义上的局部最优解。
贪心算法不是对所有问题都能得到整体最优解,关键是贪心策略的选择,选择的贪心策略必须具备无后效性,即某个状态以前的过程不会影响以后的状态,只与当前状态有关。
一种改进了的分级处理方法
实例问题:0-1背包、马跳棋盘、均分纸牌
3)分治法:
分治法可以通俗的解释为:把一个规模较大的问题划分成相似的小问题,逐个求解,再得出整个问题的解。
分治法的精髓:
分–将问题分解为规模更小的子问题;
治–将这些规模更小的子问题逐个击破;
合–将已解决的子问题合并,最终得出“母”问题的解;
经典问题:二分搜索、大整数乘法、Strassen矩阵乘法、棋盘覆盖、合并排序、快速排序、线性时间选择、最接近点对问题、循环赛日程表、汉诺塔
4)回溯法:
基本思想是一步一步向前试探,等有多种路径时任意选择一种,只要可行就继续向前,一旦失败就退回选择其它可能路径。
回溯法(探索与回溯法)是一种选优搜索法,又称为试探法,按选优条件向前搜索,以达到目标。但当探索到某一步时,发现原先选择并不优或达不到目标,就退回一步重新选择,这种走不通就退回再走的技术为回溯法,而满足回溯条件的某个状态的点称为“回溯点”。
5)动态规划法:
动态规划算法与分治法类似,其基本思想也是将待求解问题分解成若干个子问题,先求解子问题,然后从这些子问题的解得到原问题的解。由于这些子问题相互包含,为了复用已经计算的结果,常把计算的中间结果全部保存起来,自下向上多路径地求解计算问题的解。
与分治法不同的是,适合于用动态规划求解的问题,经分解得到子问题往往不是互相独立的。若用分治法来解这类问题,则分解得到的子问题数目太多,有些子问题被重复计算了很多次。
6)分支界限法:
分支限界法常以广度优先或以最小耗费(最大效益)优先的方式搜索问题的解空间树。
在分支限界法中,每一个活结点只有一次机会成为扩展结点。活结点一旦成为扩展结点,就一次性产生其所有儿子结点。在这些儿子结点中,导致不可行解或导致非最优解的儿子结点被舍弃,其余儿子结点被加入活结点表中。
此后,从活结点表中取下一结点成为当前扩展结点,并重复上述结点扩展过程。这个过程一直持续到找到所需的解或活结点表为空时为止。