INCS 775 – Data Center Security


 Content:
INCS 775 – Data Center Security
Fall 2024
Assignment - 1
Total points: 100 (Zhida Li edited for INCS 775-VA4-VA5)
 • OracleVirtualBoxor/andVMwareWorkstationPlayerinstallation • Python
• Userisnotinthesudoersfile
• MininetInstallation
• InstallingiPerf3onUbuntu • StartMininet
• MininetHosts
• Mininet
• MininetBuilt-inTopologies • WorkingwithOVS

Background:
The Fat-Tree topology, depicted in the Figure below, consists of k pods (k=8), each of which consisting of 𝑘⁄2 edge switches and 𝑘⁄2 aggregation switches.
Edge and aggregation switches connected as a clos topology and form a complete bipartite in each pod. Also each pod is connected to all core switches forming another bipartite graph.
Fat-Tree built with k-port identical switches in all layers of the topology and each of which supports 𝑘3⁄4 hosts. With Fat-Tree topology issues with oversubscription, costly aggregation and core switches, fault tolerance, and scalability are resolved. Fat-Tree established a solid topology for researchers to work onto solve other important issues such as agility through virtualization.
• Establish the Data Center topology demonstrated above and employ a Python script to construct a Fat Tree topology using Mininet.
  Link bandwidth = 8 Mbps Link Delay = 3 ms
 I've attached a Python script for a Fat-Tree topology with 4
 pods. You can modify it to support a Fat-Tree topology with 8 pods
  (Custom_FatTree_4Pods.py).
Do not add any controller for path
 setup.

• Useovs-ofctltocreatesixbidirectionalpaths,i.e.,theorangepath between h1 and h5, the blue path between h4 and h5, the brown path between h17 and h52, the red path between h20 and h25, the purple path between h113 and h126, and the pink path between h116 and h125. (No other pair of hosts should be able to communicate)
   • AftersettingupthepathrunthefollowingfromMininetconsole: o iperf h1 – h5
o iperf h4 – h5
o iperf h17 – h52 o iperf h20 – h25 o iperf h113 - h126 o iperf h116 - h125
• Thenrun:
o h1 ping h5
o h4 ping h5
o h17 ping h52
o h20 ping h25
o h113 ping h126 o h116 ping h125

  What to submit?
• Put the following files inside a compressed folder named <lastname_firstname.zip> (Only one member of the group is required to submit the assignment)
• Create a text file called Group_info and fill it with the names, student IDs, and email of each group member.
• Custom_FatTree_8Pods.py - - script containing the code to construct the Fat Tree topology 8 pods using Mininet.
(28)
  
• Files containing the flow rules using ovs-ofctl for the switches: L1_Acc-S1, L1_Acc-S2, L1_Acc-S5, L1_Acc-S7, L1_Acc-S13, L1_Acc-S29, L1_Acc-S32, L2_Agg-S1, L2_Agg-S6, L2_Agg-S14, L2_Agg-S32, L3_Core-S8. (30)
• Files created by the following commands (after path setup)
o ovs-ofctl dump-flows L1_Acc-S1 (2) o ovs-ofctl dump-flows L1_Acc-S2 (2) o ovs-ofctl dump-flows L1_Acc-S5 (2) o ovs-ofctl dump-flows L1_Acc-S7 (2) o ovs-ofctl dump-flows L1_Acc-S13 (2) o ovs-ofctl dump-flows L1_Acc-S29 (2) o ovs-ofctl dump-flows L1_Acc-S32 (2) o ovs-ofctl dump-flows L2_Agg-S1 (2) o ovs-ofctl dump-flows L2_Agg-S6 (2) o ovs-ofctl dump-flows L2_Agg-S14 (2) o ovs-ofctl dump-flows L2_Agg-S32 (2) o ovs-ofctl dump-flows L3_Core-S8 (2)
• Output of iperf commands (9) o Filename: iperf.out
o One line for each iperf output in the following format ▪ < host_id >-- < host_id >:<reported_bw>
<h1> <h5>
< h4> <h5> <h17> <h52>
< h20> <25>
< h113> < h126> < h116> <h125>
• Average of the first 20 reported round trip times from ping output (9) o Filename: latency.out
o One line containing the average round trip time between each pair:
 & > L1(Acc-S1)
 &> L1(Acc-S2)
 &> L1(Acc-S5)
 &> L1(Acc-S7)
 &> L1( Acc-S13)
 &> L1(Acc-S29)
 &> L1(Acc-S32)
 &> L2(Agg-S1)
 &> L2(Agg-S6)
 &> L2(Agg-S14)
 &> L2(Agg-S32)
 &> L3(Core-S8)

<h1> <h5>
< h4> <h5> <h17> <h52>
< h20> <25>
< h113> < h126> < h116> <h125>

 

import streamlit as st import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns from pyspark.sql import SparkSession from pyspark.ml.feature import VectorAssembler, StringIndexer, OneHotEncoder from pyspark.ml import Pipeline from pyspark.ml.classification import LogisticRegression, DecisionTreeClassifier, RandomForestClassifier from pyspark.ml.evaluation import BinaryClassificationEvaluator, MulticlassClassificationEvaluator import os import time import warnings import tempfile import subprocess import sys # 忽略警告 warnings.filterwarnings("ignore") # 检查Java版本 def check_java_version(): try: java_version = subprocess.check_output(['java', '-version'], stderr=subprocess.STDOUT, text=True) st.info(f"Java版本信息:\n{java_version}") if 'version "1.8' in java_version: st.success("检测到Java 8 (1.8.x),已启用兼容模式") st.warning("注意:Spark 3.0+ 官方推荐使用 Java 11,但我们将尝试兼容 Java 8") elif 'version "11' in java_version or 'version "17' in java_version: st.success("Java版本兼容") else: st.warning(f"检测到未知Java版本: {java_version}") except Exception as e: st.error(f"无法检查Java版本: {str(e)}") st.stop() # 设置中文字体 plt.rcParams['font.sans-serif'] = ['SimHei'] plt.rcParams['axes.unicode_minus'] = False # 页面设置 st.set_page_config( page_title="精准营销系统", page_icon="📊", layout="wide", initial_sidebar_state="expanded" ) # 自定义CSS样式 - 修复拼写错误 st.markdown(""" <style> .stApp { background: linear-gradient(135deg, #f8f9fa 0%, #e9ecef 100%); font-family: 'Helvetica Neue', Arial, sans-serif; } .header { background: linear-gradient(90deg, #1a237e 0%, #283593 100%); color: white; padding: 1.5rem; border-radius: 0.75rem; box-shadow: 0 4px 12px rgba(0,0,0,0.1); margin-bottom: 2rem; } .card { background: white; border-radius: 0.75rem; padding: 1rem; margin-bottom: 1.5rem; box-shadow: 0 4px 12px rgba(0,0,0,0.08); transition: transform 0.3s ease; } .card:hover { transform: translateY(-5px); box-shadow: 0 6px 16px rgba(0,0,0,0.12); } .stButton button { background: linear-gradient(90deg, #3949ab 0%, #1a237e 100%) !important; color: white !important; border: none !important; border-radius: 0.5rem; padding: 0.75rem 1.5rem; font-size: 1rem; font-weight: 600; transition: all 0.3s ease; width: 100%; } .stButton button:hover { transform: scale(1.05); box-shadow: 0 4px 8px rgba(57, 73, 171, 0.4); } .feature-box { background: linear-gradient(135deg, #e3f2fd 0%, #bbdefb 100%); border-radius: 0.75rem; padding: 1.5rem; margin-bottom: 1.5rem; } .result-box { background: linear-gradient(135deg, #e8f5e9 0%, #c8e6c9 100%); border-radius: 0.75rem; padding: 1.5rem; margin-top: 1.5rem; } .model-box { background: linear-gradient(135deg, #fff3e0 0%, #ffe0b2 100%); border-radius: 0.75rem; padding: 1.5rem; margin-top: 1.5rem; } .stProgress > div > div > div { background: linear-gradient(90deg, #2ecc71 0%, #27ae60 100%) !important; } .metric-card { background: white; border-radius: 0.75rem; padding: 1rem; text-align: center; box-shadow: 0 4px 8px rgba(0,0,0,0.06); } .metric-value { font-size: 1.8rem; font-weight: 700; color: #1a237e; } .metric-label { font-size: 0.9rem; color: #5c6bc0; margin-top: 0.5rem; } .highlight { background: linear-gradient(90deg, #ffeb3b 0%, #fbc02d 100%); padding: 0.2rem 0.5rem; border-radius: 0.25rem; font-weight: 600; } .stDataFrame { border-radius: 0.75rem; box-shadow: 0 4px 8px rgba(0,0,0,0.06); } .convert-high { background-color: #c8e6c9 !important; color: #388e3c !important; font-weight: 700; } .convert-low { background-color: #ffcdd2 !important; color: #c62828 !important; font-weight: 600; } .java-warning { background-color: #fff3cd; border-left: 4px solid #ffc107; padding: 1rem; margin-bottom: 1.5rem; border-radius: 0 0.25rem 0.25rem 0; } </style> """, unsafe_allow_html=True) # 创建Spark会话 - 兼容Java 8 def create_spark_session(): # 针对Java 8的兼容性配置 # 1. 使用更小的内存配置避免资源问题 # 2. 添加Java 8特定的兼容性配置 # 3. 使用更低的Spark版本兼容性设置 return SparkSession.builder \ .appName("TelecomPrecisionMarketing") \ .config("spark.driver.memory", "1g") \ .config("spark.executor.memory", "1g") \ .config("spark.sql.shuffle.partitions", "4") \ .config("spark.driver.extraJavaOptions", "-Dio.netty.tryReflectionSetAccessible=true -XX:+UseG1GC") \ .config("spark.executor.extraJavaOptions", "-Dio.netty.tryReflectionSetAccessible=true -XX:+UseG1GC") \ .config("spark.network.timeout", "800s") \ .config("spark.executor.heartbeatInterval", "60s") \ .config("spark.sql.legacy.allowUntypedScalaUDF", "true") \ .getOrCreate() # 数据预处理函数 - 优化版 def preprocess_data(df): """ 优化后的数据预处理函数 参数: df: 原始数据 (DataFrame) 返回: 预处理后的数据 (DataFrame) """ # 1. 选择关键特征 available_features = [col for col in df.columns if col in [ 'AGE', 'GENDER', 'ONLINE_DAY', 'TERM_CNT', 'IF_YHTS', 'MKT_STAR_GRADE_NAME', 'PROM_AMT_MONTH', 'is_rh_next' # 目标变量 ]] # 确保目标变量存在 if 'is_rh_next' not in available_features: st.error("错误:数据集中缺少目标变量 'is_rh_next'") return df # 只保留需要的列 df = df[available_features].copy() # 2. 处理缺失值 # 数值特征用中位数填充(比均值更鲁棒) numeric_cols = ['AGE', 'ONLINE_DAY', 'TERM_CNT', 'PROM_AMT_MONTH'] for col in numeric_cols: if col in df.columns: median_val = df[col].median() df[col].fillna(median_val, inplace=True) # 分类特征用众数填充 categorical_cols = ['GENDER', 'MKT_STAR_GRADE_NAME', 'IF_YHTS'] for col in categorical_cols: if col in df.columns: mode_val = df[col].mode()[0] if not df[col].mode().empty else '未知' df[col].fillna(mode_val, inplace=True) # 3. 异常值处理(使用IQR方法) def handle_outliers(series): Q1 = series.quantile(0.25) Q3 = series.quantile(0.75) IQR = Q3 - Q1 lower_bound = Q1 - 1.5 * IQR upper_bound = Q3 + 1.5 * IQR return series.clip(lower_bound, upper_bound) for col in numeric_cols: if col in df.columns: df[col] = handle_outliers(df[col]) return df # 标题区域 st.markdown(""" <div class="header"> <h1 style='text-align: center; margin: 0;'>精准营销系统</h1> <p style='text-align: center; margin: 0.5rem 0 0; font-size: 1.1rem;'>基于机器学习的单宽转融预测</p> </div> """, unsafe_allow_html=True) # Java版本检查 check_java_version() # 页面布局 col1, col2 = st.columns([1, 1.5]) # 左侧区域 - 图片和简介 with col1: st.markdown(""" <div class="card"> <h2>📱 智能营销系统</h2> <p>预测单宽带用户转化为融合套餐用户的可能性</p> </div> """, unsafe_allow_html=True) # 使用在线图片作为占位符 st.image("https://images.unsplash.com/photo-1551836022-d5d88e9218df?ixlib=rb-4.0.3&ixid=M3wxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHx8fA%3D%3D&auto=format&fit=crop&w=1200&q=80", caption="精准营销系统示意图", use_column_width=True) st.markdown(""" <div class="card"> <h4>📈 系统功能</h4> <ul> <li>用户转化可能性预测</li> <li>高精度机器学习模型</li> <li>可视化数据分析</li> <li>精准营销策略制定</li> </ul> </div> """, unsafe_allow_html=True) # 右侧区域 - 功能选择 with col2: st.markdown(""" <div class="card"> <h3>📋 请选择操作类型</h3> <p>您可以选择数据分析或使用模型进行预测</p> </div> """, unsafe_allow_html=True) # 功能选择 - 添加标签 option = st.radio("操作类型", ["📊 数据分析 - 探索数据并训练模型", "🔍 预测分析 - 预测用户转化可能性"], index=0) # 数据分析部分 if "数据分析" in option: st.markdown(""" <div class="card"> <h3>数据分析与模型训练</h3> <p>上传数据并训练预测模型</p> </div> """, unsafe_allow_html=True) # 上传训练数据 train_file = st.file_uploader("上传数据集 (CSV格式, GBK编码)", type=["csv"]) if train_file is not None: try: # 读取数据 train_data = pd.read_csv(train_file, encoding='GBK') # 显示数据预览 with st.expander("数据预览", expanded=True): st.dataframe(train_data.head()) col1, col2 = st.columns(2) col1.metric("总样本数", train_data.shape[0]) col2.metric("特征数量", train_data.shape[1] - 1) # 数据预处理 st.subheader("数据预处理") with st.spinner("数据预处理中..."): processed_data = preprocess_data(train_data) st.success("✅ 数据预处理完成") # 可视化数据分布 st.subheader("数据分布分析") # 目标变量分布 st.markdown("**目标变量分布 (is_rh_next)**") fig, ax = plt.subplots(figsize=(8, 5)) sns.countplot(x='is_rh_next', data=processed_data, palette='viridis') plt.title('用户转化分布 (0:未转化, 1:转化)') plt.xlabel('是否转化') plt.ylabel('用户数量') st.pyplot(fig) # 数值特征分布 st.markdown("**数值特征分布**") numeric_cols = ['AGE', 'ONLINE_DAY', 'TERM_CNT', 'PROM_AMT_MONTH'] # 动态计算子图布局 num_features = len(numeric_cols) if num_features > 0: ncols = 2 nrows = (num_features + ncols - 1) // ncols # 向上取整 fig, axes = plt.subplots(nrows, ncols, figsize=(14, 4*nrows)) # 将axes展平为一维数组 if nrows > 1 or ncols > 1: axes = axes.flatten() else: axes = [axes] # 单个子图时确保axes是列表 for i, col in enumerate(numeric_cols): if col in processed_data.columns and i < len(axes): sns.histplot(processed_data[col], kde=True, ax=axes[i], color='skyblue') axes[i].set_title(f'{col}分布') axes[i].set_xlabel('') # 隐藏多余的子图 for j in range(i+1, len(axes)): axes[j].set_visible(False) plt.tight_layout() st.pyplot(fig) else: st.warning("没有可用的数值特征") # 特征相关性分析 st.markdown("**特征相关性热力图**") corr_cols = numeric_cols + ['is_rh_next'] if len(corr_cols) > 1: corr_data = processed_data[corr_cols].corr() fig, ax = plt.subplots(figsize=(12, 8)) sns.heatmap(corr_data, annot=True, fmt=".2f", cmap='coolwarm', ax=ax) plt.title('特征相关性热力图') st.pyplot(fig) else: st.warning("特征不足,无法生成相关性热力图") # 模型训练 st.subheader("模型训练") # 训练参数设置 col1, col2 = st.columns(2) test_size = col1.slider("测试集比例", 0.1, 0.4, 0.2, 0.05) random_state = col2.number_input("随机种子", 0, 100, 42) # 开始训练按钮 if st.button("开始训练模型", use_container_width=True): # 创建临时目录用于存储模型 with tempfile.TemporaryDirectory() as tmp_dir: model_path = os.path.join(tmp_dir, "best_model") progress_bar = st.progress(0) status_text = st.empty() # 步骤1: 创建Spark会话 status_text.text("步骤1/7: 初始化Spark会话...") spark = create_spark_session() progress_bar.progress(15) # 步骤2: 转换为Spark DataFrame status_text.text("步骤2/7: 转换数据为Spark格式...") spark_df = spark.createDataFrame(processed_data) progress_bar.progress(30) # 步骤3: 划分训练集和测试集 status_text.text("步骤3/7: 划分训练集和测试集...") train_df, test_df = spark_df.randomSplit([1.0 - test_size, test_size], seed=random_state) progress_bar.progress(40) # 步骤4: 特征工程 status_text.text("步骤4/7: 特征工程处理...") categorical_cols = ['GENDER', 'MKT_STAR_GRADE_NAME', 'IF_YHTS'] existing_cat_cols = [col for col in categorical_cols if col in processed_data.columns] # 创建特征处理管道 indexers = [StringIndexer(inputCol=col, outputCol=col+"_index") for col in existing_cat_cols] encoders = [OneHotEncoder(inputCol=col+"_index", outputCol=col+"_encoded") for col in existing_cat_cols] numeric_cols = ['AGE', 'ONLINE_DAY', 'TERM_CNT', 'PROM_AMT_MONTH'] feature_cols = numeric_cols + [col+"_encoded" for col in existing_cat_cols] assembler = VectorAssembler(inputCols=feature_cols, outputCol="features") label_indexer = StringIndexer(inputCol="is_rh_next", outputCol="label") progress_bar.progress(50) # 步骤5: 构建模型 status_text.text("步骤5/7: 构建和训练模型...") # 使用更简单的模型配置 - 针对Java 8优化 rf = RandomForestClassifier( featuresCol="features", labelCol="label", numTrees=30, # 减少树的数量以适应Java 8 maxDepth=4, # 限制深度 seed=random_state, maxBins=32 # 减少bin数量以提高兼容性 ) pipeline = Pipeline(stages=indexers + encoders + [assembler, label_indexer, rf]) model = pipeline.fit(train_df) progress_bar.progress(80) # 步骤6: 评估模型 status_text.text("步骤6/7: 评估模型性能...") predictions = model.transform(test_df) evaluator_auc = BinaryClassificationEvaluator(labelCol="label", rawPredictionCol="rawPrediction") evaluator_acc = MulticlassClassificationEvaluator(labelCol="label", predictionCol="prediction", metricName="accuracy") auc = evaluator_auc.evaluate(predictions) acc = evaluator_acc.evaluate(predictions) results = { "Random Forest": {"AUC": auc, "Accuracy": acc} } progress_bar.progress(95) # 步骤7: 保存结果 status_text.text("步骤7/7: 保存模型和结果...") model.write().overwrite().save(model_path) st.session_state.model_results = results st.session_state.best_model = model st.session_state.model_path = model_path st.session_state.spark = spark progress_bar.progress(100) st.success("🎉 模型训练完成!") # 显示模型性能 st.subheader("模型性能评估") results_df = pd.DataFrame(results).T st.dataframe(results_df.style.format("{:.4f}").background_gradient(cmap='Blues')) # 特征重要性 st.subheader("特征重要性") rf_model = model.stages[-1] feature_importances = rf_model.featureImportances.toArray() importance_df = pd.DataFrame({ "Feature": feature_cols, "Importance": feature_importances }).sort_values("Importance", ascending=False).head(10) fig, ax = plt.subplots(figsize=(10, 6)) sns.barplot(x="Importance", y="Feature", data=importance_df, palette="viridis", ax=ax) plt.title('Top 10 重要特征') st.pyplot(fig) except Exception as e: st.error(f"模型训练错误: {str(e)}") st.error("提示:Java 8兼容性问题可能导致此错误,请尝试升级到Java 11") # 预测分析部分 else: st.markdown(""" <div class="card"> <h3>用户转化预测</h3> <p>预测单宽带用户转化为融合套餐的可能性</p> </div> """, unsafe_allow_html=True) # 上传预测数据 predict_file = st.file_uploader("上传预测数据 (CSV格式, GBK编码)", type=["csv"]) if predict_file is not None: try: # 读取数据 predict_data = pd.read_csv(predict_file, encoding='GBK') # 显示数据预览 with st.expander("数据预览", expanded=True): st.dataframe(predict_data.head()) # 检查是否有模型 if "model_path" not in st.session_state: st.warning("⚠️ 未找到训练好的模型,请先训练模型") st.stop() # 开始预测按钮 if st.button("开始预测", use_container_width=True): progress_bar = st.progress(0) status_text = st.empty() # 步骤1: 数据预处理 status_text.text("步骤1/4: 数据预处理中...") processed_data = preprocess_data(predict_data) progress_bar.progress(25) # 步骤2: 创建Spark会话 status_text.text("步骤2/4: 初始化Spark会话...") if "spark" not in st.session_state: spark = create_spark_session() st.session_state.spark = spark else: spark = st.session_state.spark progress_bar.progress(50) # 步骤3: 预测 status_text.text("步骤3/4: 进行预测...") spark_df = spark.createDataFrame(processed_data) best_model = st.session_state.best_model predictions = best_model.transform(spark_df) progress_bar.progress(75) # 步骤4: 处理结果 status_text.text("步骤4/4: 处理预测结果...") predictions_df = predictions.select( "CCUST_ROW_ID", "probability", "prediction" ).toPandas() # 解析概率值 predictions_df['转化概率'] = predictions_df['probability'].apply(lambda x: float(x[1])) predictions_df['预测结果'] = predictions_df['prediction'].apply(lambda x: "可能转化" if x == 1.0 else "可能不转化") # 添加转化可能性等级 predictions_df['转化可能性'] = pd.cut( predictions_df['转化概率'], bins=[0, 0.3, 0.7, 1], labels=["低可能性", "中可能性", "高可能性"] ) # 保存结果 st.session_state.prediction_results = predictions_df progress_bar.progress(100) st.success("✅ 预测完成!") except Exception as e: st.error(f"预测错误: {str(e)}") st.error("提示:Java 8兼容性问题可能导致此错误,请尝试升级到Java 11") # 显示预测结果 if "prediction_results" in st.session_state: st.markdown(""" <div class="card"> <h3>预测结果</h3> <p>用户转化可能性评估报告</p> </div> """, unsafe_allow_html=True) result_df = st.session_state.prediction_results # 转化可能性分布 st.subheader("转化可能性分布概览") col1, col2, col3 = st.columns(3) high_conv = (result_df["转化可能性"] == "高可能性").sum() med_conv = (result_df["转化可能性"] == "中可能性").sum() low_conv = (result_df["转化可能性"] == "低可能性").sum() col1.markdown(f""" <div class="metric-card"> <div class="metric-value">{high_conv}</div> <div class="metric-label">高可能性用户</div> </div> """, unsafe_allow_html=True) col2.markdown(f""" <div class="metric-card"> <div class="metric-value">{med_conv}</div> <div class="metric-label">中可能性用户</div> </div> """, unsafe_allow_html=True) col3.markdown(f""" <div class="metric-card"> <div class="metric-value">{low_conv}</div> <div class="metric-label">低可能性用户</div> </div> """, unsafe_allow_html=True) # 转化可能性分布图 - 修复拼写错误 fig, ax = plt.subplots(figsize=(8, 5)) conv_counts = result_df["转化可能性"].value_counts() conv_counts.plot(kind='bar', color=['#4CAF50', '#FFC107', '#F44336'], ax=ax) plt.title('用户转化可能性分布') plt.xlabel('可能性等级') plt.ylabel('用户数量') st.pyplot(fig) # 详细预测结果 st.subheader("详细预测结果") # 样式函数 def color_convert(val): if val == "高可能性": return "background-color: #c8e6c9; color: #388e3c;" elif val == "中可能性": return "background-color: #fff9c4; color: #f57f17;" else: return "background-color: #ffcdd2; color: #c62828;" # 格式化显示 display_df = result_df[["CCUST_ROW_ID", "转化概率", "预测结果", "转化可能性"]] styled_df = display_df.style.format({ "转化概率": "{:.2%}" }).applymap(color_convert, subset=["转化可能性"]) st.dataframe(styled_df, height=400) # 下载结果 csv = display_df.to_csv(index=False).encode("utf-8") st.download_button( label="下载预测结果", data=csv, file_name="用户转化预测结果.csv", mime="text/csv", use_container_width=True ) # 页脚 st.markdown("---") st.markdown(""" <div style="text-align: center; color: #5c6bc0; font-size: 0.9rem; padding: 1rem;"> © 2023 精准营销系统 | 基于Spark和Streamlit开发 | Java 8兼容模式 </div> """, unsafe_allow_html=True) 执行上述代码,系统已成功配置java17,但是仍然在spark初始会话卡住,给出修改后完整代码
07-02
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值