二叉树
插入
- 插入值 < 结点值,插入结点的左子树
- 插入值 > 结点值,插入结点的又子树
- 不插入相同的值
遍历
1 前序遍历
2 中序遍历
3 后序遍历
删除结点
1 删除的结点没有左右子树
if (del_node->entry.left == NULL && del_node->entry.right == NULL)
{
printf("%d\n", parent_node->value);
if (del_node->value < parent_node->value)
{
parent_node->entry.left = NULL;
}
else
{
parent_node->entry.right = NULL;
}
}
2 删除的结点只有左子树或右子树
else if (del_node->entry.left != NULL && del_node->entry.right ==
NULL)
{
if (del_node->value < parent_node->value)
{
parent_node->entry.left = del_node->entry.left;
}
else
{
parent_node->entry.left = del_node->entry.right;
}
}
else if (del_node->entry.left == NULL && del_node->entry.right !=
NULL)
{
if (del_node->value < parent_node->value)
{
parent_node->entry.left = del_node->entry.right;
}
else
{
parent_node->entry.right = del_node->entry.right;
}
}
3 删除的结点有左右子树
- 在这里用删除结点的左子树的最右结点(称作后续结点)来代替删除结点的位置(也可是右子树的最左结点作为后续结点,同理)
1)后续结点为删除结点的子叶
- 将删除结点的父结点指向后续结点, 然后后续结点的右子树指向删除结点的右子树
2)后续结点非删除结点的子叶
- 后续结点的值赋值给删除的结点, 后续结点的父结点的右子树指向后续结点的左子树, 删除后续结点
else if (del_node->entry.left != NULL && del_node->entry.right != NULL)
{
stBtreeNode *parent = del_node->entry.left;
stBtreeNode *node = parent->entry.right;
if (node != NULL)
{
while (node != NULL)
{
if (node->entry.right != NULL)
{
parent = node;
node = node->entry.right;
}
else
{
break;
}
}
del_node->value = node->value;
parent->entry.right = node->entry.left;
free(node);
node = NULL;
}
else
{
if (del_node->value < parent_node->value)
{
parent_node->entry.left = parent;
}
else
{
parent_node->entry.right = parent;
}
parent->entry.right = del_node->entry.right;
}
}

全部代码
#include <stdio.h>
#include <assert.h>
#include <stdlib.h>
#define KEY_VALUE int
#define NODE_ENTRY(name, type) \
struct name { \
struct type *left; \
struct type *right; \
}
typedef enum {
EN_PREORDER,
EN_INORDER,
EN_POSTORDER,
} TRAVER_TYPE;
typedef struct {
struct btree_node *left;
struct btree_node *right;
} stNodeEntry;
typedef struct btree_node {
KEY_VALUE value;
stNodeEntry entry;
} stBtreeNode;
typedef struct btree {
stBtreeNode *root;
} stBtree;
int btree_destroy_node(stBtreeNode *parent_node, stBtreeNode *del_node)
{
printf("%d, %d\n", parent_node->value, del_node->value);
if (del_node == NULL)
{
return -1;
}
if (del_node->entry.left == NULL && del_node->entry.right == NULL)
{
printf("%d\n", parent_node->value);
if (del_node->value < parent_node->value)
{
parent_node->entry.left = NULL;
}
else
{
parent_node->entry.right = NULL;
}
}
else if (del_node->entry.left != NULL && del_node->entry.right == NULL)
{
if (del_node->value < parent_node->value)
{
parent_node->entry.left = del_node->entry.left;
}
else
{
parent_node->entry.left = del_node->entry.right;
}
}
else if (del_node->entry.left == NULL && del_node->entry.right != NULL)
{
if (del_node->value < parent_node->value)
{
parent_node->entry.left = del_node->entry.right;
}
else
{
parent_node->entry.right = del_node->entry.right;
}
}
else if (del_node->entry.left != NULL && del_node->entry.right != NULL)
{
stBtreeNode *parent = del_node->entry.left;
stBtreeNode *node = parent->entry.right;
if (node != NULL)
{
while (node != NULL)
{
if (node->entry.right != NULL)
{
parent = node;
node = node->entry.right;
}
else
{
break;
}
}
del_node->value = node->value;
parent->entry.right = node->entry.left;
free(node);
node = NULL;
}
else
{
if (del_node->value < parent_node->value)
{
parent_node->entry.left = parent;
}
else
{
parent_node->entry.right = parent;
}
parent->entry.right = del_node->entry.right;
}
}
if (parent_node != del_node)
{
free(del_node);
del_node = NULL;
}
return 0;
}
stBtreeNode *btree_create_node(KEY_VALUE value)
{
stBtreeNode *node;
node = (stBtreeNode *)malloc(sizeof(stBtreeNode));
assert(node != NULL);
node->value = value;
node->entry.left = NULL;
node->entry.right = NULL;
return node;
}
int btree_insert_node(stBtree *tree, KEY_VALUE value)
{
assert(tree != NULL);
if (tree->root == NULL)
{
tree->root = btree_create_node(value);
return 0;
}
stBtreeNode *node;
stBtreeNode *temp;
node = tree->root;
while (node != NULL)
{
temp = node;
if (value < node->value)
{
node = node->entry.left;
}
else
{
node = node->entry.right;
}
}
if (value < temp->value)
{
temp->entry.left = btree_create_node(value);
}
else
{
temp->entry.right = btree_create_node(value);
}
return 0;
}
int btree_del_value(stBtree *tree, KEY_VALUE value)
{
assert(tree != NULL);
int ret = -1;
stBtreeNode *parent, *node;
parent = tree->root;
node = tree->root;
while (node != NULL)
{
if (value == node->value)
{
ret = btree_destroy_node(parent, node);
break;
}
else if (value < node->value)
{
parent = node;
node = node->entry.left;
}
else
{
parent = node;
node = node->entry.right;
}
}
return ret;
}
int btree_traversal(stBtreeNode *node, TRAVER_TYPE type)
{
if (node == NULL)
{
return 0;
}
if (EN_PREORDER == type) printf("%4d", node->value);
btree_traversal(node->entry.left, type);
if (EN_INORDER == type) printf("%4d", node->value);
btree_traversal(node->entry.right, type);
if (EN_POSTORDER == type) printf("%4d", node->value);
return 0;
}
int main(void)
{
int i;
int array[] = {11,7,13,6,8,9,10,12,14};
int len = 8;
stBtree btree = {0};
for (i = 0; i < len; i++)
{
btree_insert_node(&btree, array[i]);
}
btree_traversal(btree.root, EN_PREORDER);
printf("\n");
printf("del: %s\n", btree_del_value(&btree, 11) == 0 ? "succeed":"failed");
btree_traversal(btree.root, EN_PREORDER);
printf("\n");
return 0;
}