To the Max
Time Limit: 1000MS | Memory Limit: 10000K | |
Total Submissions: 36079 | Accepted: 18928 |
Description
Given a two-dimensional array of positive and negative integers, a sub-rectangle is any contiguous sub-array of size 1*1 or greater located within the whole array. The sum of a rectangle is the sum of all the elements in that rectangle.
In this problem the sub-rectangle with the largest sum is referred to as the maximal sub-rectangle.
As an example, the maximal sub-rectangle of the array:
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
is in the lower left corner:
9 2
-4 1
-1 8
and has a sum of 15.
As an example, the maximal sub-rectangle of the array:
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
is in the lower left corner:
9 2
-4 1
-1 8
and has a sum of 15.
Input
The input consists of an N * N array of integers. The input begins with a single positive integer N on a line by itself, indicating the size of the square two-dimensional array. This is followed by N^2 integers separated by whitespace
(spaces and newlines). These are the N^2 integers of the array, presented in row-major order. That is, all numbers in the first row, left to right, then all numbers in the second row, left to right, etc. N may be as large as 100. The numbers in the array will
be in the range [-127,127].
Output
Output the sum of the maximal sub-rectangle.
Sample Input
4 0 -2 -7 0 9 2 -6 2 -4 1 -4 1 -1 8 0 -2
Sample Output
15
题意:给出一个矩阵,求最大的子矩阵和。
思路:枚举每个子矩阵,然后压缩子矩阵(将每行同列的元素加起来,变成只有一行),使之变成一维的最大子序列和问题。
AC代码:
#include <iostream> #include <cstring> #include <string> #include <cstdio> #include <algorithm> #include <queue> #include <cmath> #include <vector> #include <cstdlib> using namespace std; const double INF=100000000; int max3(int a,int b,int c) { if(a<b) a=b; return a>c?a:c; } int main() { int n; int map[105][105],temp[105]; while(cin>>n) { for(int i=1; i<=n; i++) for(int j=1; j<=n; j++) cin>>map[i][j]; int max=-INF; for(int i=1; i<=n; i++) { memset(temp,0,sizeof(temp)); for(int j=i; j<=n; j++) { int sum=0; for(int k=1;k<=n;k++) //压缩矩阵 temp[k]+=map[j][k]; for(int k=1;k<=n;k++) //求最大子序列和 { if(sum>=0) sum+=temp[k]; else sum=temp[k]; if(sum>max) max=sum; } } } cout<<max<<endl; } return 0; }