// 梯度下降法.cpp : 此文件包含 "main" 函数。程序执行将在此处开始并结束。
//
#include "pch.h"
#include <iostream>
#define maxn 105
#include <cmath>
#include <algorithm>
#include<fstream>
#include <cstdio>
using namespace std;
int n, m; //n个特征(因子),m个数据
double theta[maxn];//参数集
double temp[maxn];
double data[maxn][maxn];//数据集
double Y[maxn];//结果集
double hx[maxn];
const double eps = 1e-9;//1*10的-9次方
double alpha = 0.001;
double ave[maxn];
void Mean_Normaliazation()
{
for (int i = 0;i <= n;++i)
{
double maxim = -1e9;
double minum = 1e9;
double tmp = 0;
for (int j = 1;j <= m;++j)
{
tmp += ::data[j][i];
}
tmp /= m;
double mb = 0;
for (int j = 1;j <= m;++j)
{
mb += (::data[j][i] - tmp)*(::data[j][i] - tmp);
}
mb /= m;
mb = sqrt(mb);
for (int j = 1;j <= m;++j)
{
::data[j][i] = (::data[j][i] - tmp) / mb;
}
}
double maxim = -1e9;
/*double tmp=0;
for(int i=1;i<=m;++i)
{
maxim=max(Y[i],maxim);
tmp+=Y[i];
}
tmp/=m;
for(int i=1;i<=m;++i)
{
Y[i]=(Y[i]-tmp)/maxim;
}*/
}
double h(int x)//计算假设函数
{
double res = 0;
for (int i = 0;i <= n;++i)
{
res += theta[i] * ::data[x][i];
}
return res;
}
double J_theta()//计算cost function
{
double res = 0;
for (int i = 1;i <= m;++i)
{
res += (h(i) - Y[i])*(h(i) - Y[i]);
}
res = res / (2 * m);
return res;
}
double f(int x)//求偏导数
{
double res = 0;
for (int i = 1;i <= m;++i)
{
res += hx[i] * ::data[i][x];
}
res /= m;
return res;
}
void Gradient_Descent()//梯度下降
{
for (int i = 1;i <= m;++i)
{
::data[i][0] = 1;
}
for (int i = 0;i <= n;++i)
{
theta[i] = 1;//初始化
}
double now, nex;
do
{
now = J_theta();
for (int i = 1;i <= m;++i)
{
hx[i] = h(i) - Y[i];
}
for (int i = 0;i <= n;++i)
{
temp[i] = theta[i] - alpha * f(i);
}
for (int i = 0;i <= n;++i)
{
theta[i] = temp[i];
}
nex = J_theta();
//cout<<J_theta()<<endl;
} while (abs(nex - now) > eps);
}
int main()
{
ifstream fin("E:\\iris.data.txt");//读入文本文件内的数据
//freopen("in.txt", "r", stdin);
cout << "请输入特征数、数据个数";
cin >> n >> m;
for (int i = 1;i <= m;++i)
{
for (int j = 1;j <= n;++j)
{
cin >> ::data[i][j];
}
}
for (int i = 1;i <= m;++i)
{
cin >> Y[i];
}
Mean_Normaliazation();
Gradient_Descent();
for (int i = 0;i <= n;++i)
{
cout << theta[i];
//printf("%.2lf\n", theta[i]);
}
return 0;
}
梯度下降法
最新推荐文章于 2024-11-17 19:00:00 发布